wondervictor commited on
Commit
b56f62c
·
verified ·
1 Parent(s): 88a914a

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +6 -6
model.py CHANGED
@@ -114,10 +114,10 @@ class Model:
114
  condition_img = condition_img.resize((512,512))
115
  W, H = condition_img.size
116
 
117
- condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(2,1,1,1)
118
  condition_img = condition_img.to(self.device)
119
  condition_img = 2*(condition_img/255 - 0.5)
120
- prompts = [prompt] * 2
121
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
122
 
123
  print(f"processing left-padding...")
@@ -160,7 +160,7 @@ class Model:
160
 
161
  samples = torch.cat((condition_img[0:1], samples), dim=0)
162
  samples = 255 * (samples * 0.5 + 0.5)
163
- samples = [image] + [
164
  Image.fromarray(
165
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(
166
  0, 255).astype(np.uint8)) for sample in samples
@@ -204,10 +204,10 @@ class Model:
204
  condition_img = condition_img.resize((512,512))
205
  W, H = condition_img.size
206
 
207
- condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(2,1,1,1)
208
  condition_img = condition_img.to(self.device)
209
  condition_img = 2*(condition_img/255 - 0.5)
210
- prompts = [prompt] * 2
211
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
212
 
213
  print(f"processing left-padding...")
@@ -250,7 +250,7 @@ class Model:
250
  samples = samples.cpu()
251
  samples = torch.cat((condition_img[0:1], samples), dim=0)
252
  samples = 255 * (samples * 0.5 + 0.5)
253
- samples = [image] + [
254
  Image.fromarray(
255
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(0, 255).astype(np.uint8))
256
  for sample in samples
 
114
  condition_img = condition_img.resize((512,512))
115
  W, H = condition_img.size
116
 
117
+ condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(3,1,1,1)
118
  condition_img = condition_img.to(self.device)
119
  condition_img = 2*(condition_img/255 - 0.5)
120
+ prompts = [prompt] * 3
121
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
122
 
123
  print(f"processing left-padding...")
 
160
 
161
  samples = torch.cat((condition_img[0:1], samples), dim=0)
162
  samples = 255 * (samples * 0.5 + 0.5)
163
+ samples = [
164
  Image.fromarray(
165
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(
166
  0, 255).astype(np.uint8)) for sample in samples
 
204
  condition_img = condition_img.resize((512,512))
205
  W, H = condition_img.size
206
 
207
+ condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(3,1,1,1)
208
  condition_img = condition_img.to(self.device)
209
  condition_img = 2*(condition_img/255 - 0.5)
210
+ prompts = [prompt] * 3
211
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
212
 
213
  print(f"processing left-padding...")
 
250
  samples = samples.cpu()
251
  samples = torch.cat((condition_img[0:1], samples), dim=0)
252
  samples = 255 * (samples * 0.5 + 0.5)
253
+ samples = [
254
  Image.fromarray(
255
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(0, 255).astype(np.uint8))
256
  for sample in samples