Spaces:
Running
on
Zero
Running
on
Zero
wondervictor
commited on
Upload 10 files
Browse files- GETTING_STARTED.md +101 -0
- INSTALL.md +41 -0
- LICENSE +209 -0
- README copy.md +68 -0
- app.py +188 -0
- requirements.txt +26 -0
- train_net_fcclip.py +349 -0
- train_net_maftp.py +298 -0
- train_net_maskadapter.py +360 -0
GETTING_STARTED.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Getting Started with Mask-Adapter
|
2 |
+
|
3 |
+
This document provides a brief intro of the usage of Mask-Adapter.
|
4 |
+
|
5 |
+
Please see [Getting Started with Detectron2](https://github.com/facebookresearch/detectron2/blob/master/GETTING_STARTED.md) for full usage.
|
6 |
+
|
7 |
+
|
8 |
+
### Inference Demo with Pre-trained Models
|
9 |
+
|
10 |
+
We provide `demo.py` that is able to demo builtin configs. Run it with:
|
11 |
+
```
|
12 |
+
cd demo/
|
13 |
+
python demo.py \
|
14 |
+
--input input1.jpg input2.jpg \
|
15 |
+
[--other-options]
|
16 |
+
--opts MODEL.WEIGHTS /path/to/checkpoint_file
|
17 |
+
```
|
18 |
+
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
|
19 |
+
This command will run the inference and show visualizations in an OpenCV window.
|
20 |
+
|
21 |
+
For details of the command line arguments, see `demo.py -h` or look at its source code
|
22 |
+
to understand its behavior. Some common arguments are:
|
23 |
+
* To run __on your webcam__, replace `--input files` with `--webcam`.
|
24 |
+
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
|
25 |
+
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
|
26 |
+
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
|
27 |
+
|
28 |
+
|
29 |
+
### Ground-truth Warmup Training
|
30 |
+
We provide the script `train_net_maskadapter.py` to train the mask-adapter using ground-truth masks.To train a model with `train_net_maskadapter.py`, first set up the corresponding datasets as described in [datasets/README.md](https://chatgpt.com/c/datasets/README.md) , and then run the following command:
|
31 |
+
|
32 |
+
```
|
33 |
+
python train_net_maskadapter.py --num-gpus 4 \
|
34 |
+
--config-file configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml
|
35 |
+
```
|
36 |
+
|
37 |
+
For the MAFTP model, run:
|
38 |
+
|
39 |
+
|
40 |
+
```
|
41 |
+
python train_net_maskadapter.py --num-gpus 4 \
|
42 |
+
--config-file configs/ground-truth-warmup/mask-adapter/mask_adapter_maft_convnext_large_cocostuff_eval_ade20k.yaml \
|
43 |
+
MODEL.WEIGHTS /path/to/maftp_l.pth
|
44 |
+
```
|
45 |
+
|
46 |
+
The configurations are set for 4-GPU training. Since we use the ADAMW optimizer, it is unclear how to scale the learning rate with batch size. If training with a single GPU, you will need to manually adjust the learning rate and batch size:
|
47 |
+
|
48 |
+
|
49 |
+
```
|
50 |
+
python train_net_maskadapter.py \
|
51 |
+
--config-file configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml \
|
52 |
+
--num-gpus 1 SOLVER.IMS_PER_BATCH SET_TO_SOME_REASONABLE_VALUE SOLVER.BASE_LR SET_TO_SOME_REASONABLE_VALUE
|
53 |
+
```
|
54 |
+
|
55 |
+
### Combining Mask-Adapter Weights with Mask2Former
|
56 |
+
|
57 |
+
Since the ground-truth warmup phase for training the mask-adapter does not involve training Mask2Former, the weights obtained in the first phase will not include Mask2Former weights. To combine the weights, run the following command:
|
58 |
+
|
59 |
+
|
60 |
+
```
|
61 |
+
python tools/weight_fuse.py \
|
62 |
+
--model_first_phase_path /path/to/first_phase.pth \
|
63 |
+
--model_sem_seg_path /path/to/maftp_l.pth \
|
64 |
+
--output_path /path/to/maftp_l_withadapter.pth
|
65 |
+
```
|
66 |
+
|
67 |
+
### Mixed-Masks Training
|
68 |
+
For the mixed-masks training phase, we provide two scripts: `train_net_fcclip.py` and `train_net_maftp.py`, which train the mask-adapter for FC-CLIP and MAFTP models, respectively. These two models use different backbones (CLIP) and training source data.
|
69 |
+
For FC-CLIP, run:
|
70 |
+
|
71 |
+
|
72 |
+
```
|
73 |
+
python train_net_fcclip.py --num-gpus 4 \
|
74 |
+
--config-file configs/mixed-mask-training/fc-clip/fcclip/fcclip_convnext_large_eval_ade20k.yaml MODEL.WEIGHTS /path/to/checkpoint_file
|
75 |
+
```
|
76 |
+
|
77 |
+
For MAFTP, run:
|
78 |
+
|
79 |
+
|
80 |
+
```
|
81 |
+
python train_net_maftp.py --num-gpus 4 \
|
82 |
+
--config-file configs/mixed-mask-training/maftp/semantic/train_semantic_large_eval_a150.yaml MODEL.WEIGHTS /path/to/checkpoint_file
|
83 |
+
```
|
84 |
+
|
85 |
+
To evaluate a model’s performance, for FC-CLIP, use:
|
86 |
+
|
87 |
+
|
88 |
+
```
|
89 |
+
python train_net_fcclip.py \
|
90 |
+
--config-file configs/mixed-mask-training/fc-clip/fcclip/fcclip_convnext_large_eval_ade20k.yaml \
|
91 |
+
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
92 |
+
```
|
93 |
+
|
94 |
+
For MAFTP, use:
|
95 |
+
|
96 |
+
|
97 |
+
```
|
98 |
+
python train_net_maftp.py \
|
99 |
+
--config-file configs/mixed-mask-training/maftp/semantic/train_semantic_large_eval_a150.yaml \
|
100 |
+
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
101 |
+
```
|
INSTALL.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Installation
|
2 |
+
### Requirements
|
3 |
+
1. Clone this repository
|
4 |
+
```
|
5 |
+
git clone https://github.com/hustvl/MaskAdapter.git
|
6 |
+
```
|
7 |
+
2. Install the appropriate version of PyTorch for your CUDA version. Ensure that the PyTorch version is ≥ 1.9 and compatible with the version required by Detectron2. For CUDA 11.8, you can install the following:
|
8 |
+
```
|
9 |
+
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu118
|
10 |
+
```
|
11 |
+
3. Following [Detectron2 installation instructions](https://detectron2.readthedocs.io/tutorials/install.html) to install Detectron2.
|
12 |
+
```
|
13 |
+
git clone https://github.com/facebookresearch/detectron2.git
|
14 |
+
python -m pip install -e detectron2
|
15 |
+
```
|
16 |
+
4. Install other requirements.
|
17 |
+
```
|
18 |
+
pip install -r requirements.txt
|
19 |
+
cd fcclip/modeling/pixel_decoder/ops
|
20 |
+
sh make.sh
|
21 |
+
```
|
22 |
+
|
23 |
+
### Example conda environment configuration
|
24 |
+
|
25 |
+
|
26 |
+
```bash
|
27 |
+
conda create --name mask_adapter python=3.8
|
28 |
+
conda activate mask_adapter
|
29 |
+
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu118
|
30 |
+
|
31 |
+
git clone https://github.com/facebookresearch/detectron2.git
|
32 |
+
python -m pip install -e detectron2
|
33 |
+
|
34 |
+
pip install git+https://github.com/cocodataset/panopticapi.git
|
35 |
+
git clone https://github.com/hustvl/MaskAdapter.git
|
36 |
+
cd MaskAdapter
|
37 |
+
pip install -r requirements.txt
|
38 |
+
cd fcclip/modeling/pixel_decoder/ops
|
39 |
+
sh make.sh
|
40 |
+
cd ../../../..
|
41 |
+
```
|
LICENSE
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
<<<<<<< HEAD
|
202 |
+
<<<<<<< HEAD
|
203 |
+
limitations under the License.
|
204 |
+
=======
|
205 |
+
limitations under the License.
|
206 |
+
>>>>>>> master
|
207 |
+
=======
|
208 |
+
limitations under the License.
|
209 |
+
>>>>>>> dd48391686cd7522a9a9dce5403bee133d823327
|
README copy.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MaskAdapter
|
2 |
+
<div align ="center">
|
3 |
+
<img src="./assets/logo.jpeg" width="20%">
|
4 |
+
<h1> Mask-Adapter </h1>
|
5 |
+
<h3> Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation </h3>
|
6 |
+
|
7 |
+
YongKang Li<sup>1,\*</sup>, [Tianheng Cheng](https://scholar.google.com/citations?user=PH8rJHYAAAAJ&hl=zh-CN)<sup>1,\*</sup>, [Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu)<sup>1</sup>, [Xinggang Wang](https://xwcv.github.io/)<sup>1,📧</sup>
|
8 |
+
|
9 |
+
<sup>1</sup> Huazhong University of Science and Technology,
|
10 |
+
|
11 |
+
|
12 |
+
(\* equal contribution, 📧 corresponding author)
|
13 |
+
|
14 |
+
[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)]()
|
15 |
+
[![checkpoints](https://img.shields.io/badge/HuggingFace-🤗-orange)]()
|
16 |
+
[![🤗 HuggingFace Demo](https://img.shields.io/badge/Mask_Adapter-🤗_HF_Demo-orange)]()
|
17 |
+
|
18 |
+
</div>
|
19 |
+
|
20 |
+
|
21 |
+
<div align="center">
|
22 |
+
<img src="./assets/main_fig.png">
|
23 |
+
</div>
|
24 |
+
|
25 |
+
## Highlights
|
26 |
+
|
27 |
+
* Mask-Adapter is a simple yet remarkably effective method and can be seamlessly integrated into open-vocabulary segmentation methods, e.g., [FC-CLIP](https://github.com/bytedance/fc-clip) and [MAFT-Plus](https://github.com/jiaosiyu1999/MAFT-Plus), to tackle the existing bottlenecks.
|
28 |
+
|
29 |
+
* Mask-Adapter effectively extends to SAM without training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.
|
30 |
+
|
31 |
+
## Updates
|
32 |
+
- [x] Release code
|
33 |
+
- [x] Release weights
|
34 |
+
- [x] Release demo with SAM-2👉 [🤗 Mask-Adapter]()
|
35 |
+
- [ ] Release weights training with addtional data
|
36 |
+
|
37 |
+
|
38 |
+
## Installation
|
39 |
+
Please follow [installation](INSTALL.md).
|
40 |
+
|
41 |
+
## Getting Started
|
42 |
+
|
43 |
+
See [Preparing Datasets for Mask-Adapter](datasets/README.md).Following [FC-CLIP](https://github.com/bytedance/fc-clip) and [MAFT-Plus](https://github.com/jiaosiyu1999/MAFT-Plus) to prepare datasets.
|
44 |
+
|
45 |
+
See [Getting Started with Mask-Adapter](GETTING_STARTED.md).
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
## <a name="Citing Mask-Adapter"></a>Citing Mask-Adapter
|
50 |
+
|
51 |
+
If you use Mask-Adapter in your research, please use the following BibTeX entry.
|
52 |
+
|
53 |
+
```BibTeX
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
## Acknowledgement
|
58 |
+
|
59 |
+
[Mask2Former](https://github.com/facebookresearch/Mask2Former)
|
60 |
+
|
61 |
+
[ODISE](https://github.com/NVlabs/ODISE)
|
62 |
+
|
63 |
+
[FC-CLIP](https://github.com/bytedance/fc-clip)
|
64 |
+
|
65 |
+
[MAFTP](https://github.com/jiaosiyu1999/MAFT-Plus)
|
66 |
+
|
67 |
+
[SAM](https://github.com/facebookresearch/segment-anything)
|
68 |
+
# MaskAdapter
|
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing as mp
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
try:
|
6 |
+
import detectron2
|
7 |
+
except:
|
8 |
+
import os
|
9 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
10 |
+
|
11 |
+
from detectron2.config import get_cfg
|
12 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
13 |
+
from detectron2.data.detection_utils import read_image
|
14 |
+
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
|
15 |
+
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
|
16 |
+
import gradio as gr
|
17 |
+
import gdown
|
18 |
+
import open_clip
|
19 |
+
from sam2.build_sam import build_sam2
|
20 |
+
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter
|
21 |
+
|
22 |
+
# ckpt_url = 'https://drive.google.com/uc?id=1cn-ohxgXDrDfkzC1QdO-fi8IjbjXmgKy'
|
23 |
+
# output = './ovseg_swinbase_vitL14_ft_mpt.pth'
|
24 |
+
# gdown.download(ckpt_url, output, quiet=False)
|
25 |
+
|
26 |
+
|
27 |
+
def setup_cfg(config_file):
|
28 |
+
# load config from file and command-line arguments
|
29 |
+
cfg = get_cfg()
|
30 |
+
add_deeplab_config(cfg)
|
31 |
+
add_maskformer2_config(cfg)
|
32 |
+
add_fcclip_config(cfg)
|
33 |
+
add_mask_adapter_config(cfg)
|
34 |
+
cfg.merge_from_file(config_file)
|
35 |
+
cfg.freeze()
|
36 |
+
return cfg
|
37 |
+
|
38 |
+
|
39 |
+
def inference_automatic(input_img, class_names):
|
40 |
+
mp.set_start_method("spawn", force=True)
|
41 |
+
config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
|
42 |
+
cfg = setup_cfg(config_file)
|
43 |
+
|
44 |
+
demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
|
45 |
+
|
46 |
+
class_names = class_names.split(',')
|
47 |
+
img = read_image(input_img, format="BGR")
|
48 |
+
_, visualized_output = demo.run_on_image(img, class_names)
|
49 |
+
|
50 |
+
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
|
51 |
+
|
52 |
+
|
53 |
+
def inference_point(input_img, evt: gr.SelectData,):
|
54 |
+
# In point mode, implement the logic to process points from the user click (x, y)
|
55 |
+
# You can adjust your segmentation logic based on clicked points.
|
56 |
+
x, y = evt.index[0], evt.index[1]
|
57 |
+
points = [[x, y]] # 假设只选择一个点作为输入
|
58 |
+
print(f"Selected point: {points}")
|
59 |
+
import time
|
60 |
+
start_time = time.time()
|
61 |
+
mp.set_start_method("spawn", force=True)
|
62 |
+
config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
|
63 |
+
cfg = setup_cfg(config_file)
|
64 |
+
|
65 |
+
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
|
66 |
+
end_time = time.time()
|
67 |
+
print("init time",end_time - start_time)
|
68 |
+
|
69 |
+
start_time = time.time()
|
70 |
+
img = read_image(input_img, format="BGR")
|
71 |
+
|
72 |
+
# Assume 'points' is a list of (x, y) coordinates to specify where the user clicks
|
73 |
+
# Process the image and points to create a segmentation map accordingly
|
74 |
+
_, visualized_output = demo.run_on_image_with_points(img, points)
|
75 |
+
end_time = time.time()
|
76 |
+
print("inf time",end_time - start_time)
|
77 |
+
return visualized_output
|
78 |
+
|
79 |
+
|
80 |
+
sam2_model = None
|
81 |
+
clip_model = None
|
82 |
+
mask_adapter = None
|
83 |
+
|
84 |
+
# 加载和初始化函数
|
85 |
+
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
|
86 |
+
cfg = setup_cfg(cfg)
|
87 |
+
global sam2_model, clip_model, mask_adapter
|
88 |
+
|
89 |
+
# SAM2初始化
|
90 |
+
if sam2_model is None:
|
91 |
+
sam2_model = build_sam2(model_cfg, sam_path, device="cuda", apply_postprocessing=False)
|
92 |
+
print("SAM2 model initialized.")
|
93 |
+
|
94 |
+
# CLIP模型初始化
|
95 |
+
if clip_model is None:
|
96 |
+
clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
|
97 |
+
print("CLIP model initialized.")
|
98 |
+
|
99 |
+
# Mask Adapter模型初始化
|
100 |
+
if mask_adapter is None:
|
101 |
+
mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").cuda()
|
102 |
+
# 加载Adapter状态字典
|
103 |
+
adapter_state_dict = torch.load(adapter_pth)
|
104 |
+
adapter_state_dict = {k.replace('mask_adapter.', '').replace('adapter.', ''): v
|
105 |
+
for k, v in adapter_state_dict["model"].items()
|
106 |
+
if k.startswith('adapter') or k.startswith('mask_adapter')}
|
107 |
+
mask_adapter.load_state_dict(adapter_state_dict)
|
108 |
+
print("Mask Adapter model initialized.")
|
109 |
+
|
110 |
+
# 初始化配置和模型
|
111 |
+
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
112 |
+
sam_path = '/home/yongkangli/segment-anything-2/checkpoints/sam2.1_hiera_large.pt'
|
113 |
+
adapter_pth = './model_0279999_with_sem_new.pth'
|
114 |
+
cfg = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
|
115 |
+
|
116 |
+
# 调用初始化函数
|
117 |
+
initialize_models(sam_path, adapter_pth, model_cfg, cfg)
|
118 |
+
|
119 |
+
# Examples for testing
|
120 |
+
examples = [
|
121 |
+
['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
|
122 |
+
['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
|
123 |
+
['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
|
124 |
+
]
|
125 |
+
|
126 |
+
output_labels = ['segmentation map']
|
127 |
+
|
128 |
+
title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'
|
129 |
+
|
130 |
+
description = """
|
131 |
+
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
|
132 |
+
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
|
133 |
+
<div style="display: flex; gap: 20px;">
|
134 |
+
<a href="https://arxiv.org/abs/2406.20076">
|
135 |
+
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
|
136 |
+
</a>
|
137 |
+
<a href="https://github.com/hustvl/MaskAdapter">
|
138 |
+
<img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
|
139 |
+
</a>
|
140 |
+
</div>
|
141 |
+
"""
|
142 |
+
|
143 |
+
# Interface with mode selection using Tabs
|
144 |
+
with gr.Blocks() as demo:
|
145 |
+
gr.Markdown(title) # Title
|
146 |
+
gr.Markdown(description) # Description
|
147 |
+
|
148 |
+
with gr.Tabs():
|
149 |
+
with gr.TabItem("Automatic Mode"):
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column():
|
152 |
+
input_image = gr.Image(type='filepath', label="Input Image")
|
153 |
+
class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
|
154 |
+
with gr.Column():
|
155 |
+
output_image = gr.Image(type="pil", label='Segmentation Map')
|
156 |
+
|
157 |
+
# Buttons below segmentation map (now placed under segmentation map)
|
158 |
+
run_button = gr.Button("Run Automatic Segmentation")
|
159 |
+
run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
|
160 |
+
|
161 |
+
clear_button = gr.Button("Clear")
|
162 |
+
clear_button.click(lambda: None, inputs=None, outputs=output_image)
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)
|
166 |
+
|
167 |
+
with gr.TabItem("Point Mode"):
|
168 |
+
with gr.Row(): # 水平排列
|
169 |
+
with gr.Column():
|
170 |
+
input_image = gr.Image(type='filepath', label="Upload Image", interactive=True) # 上传图片并允许交互
|
171 |
+
points_input = gr.State(value=[]) # 用于存储点击的点
|
172 |
+
|
173 |
+
with gr.Column(): # 第二列:分割图输出
|
174 |
+
output_image_point = gr.Image(type="pil", label='Segmentation Map') # 输出分割图
|
175 |
+
|
176 |
+
# 直接使用 `SelectData` 事件触发 `inference_point`
|
177 |
+
input_image.select(inference_point, inputs=[input_image], outputs=output_image_point)
|
178 |
+
|
179 |
+
# 清除分割图的按钮
|
180 |
+
clear_button_point = gr.Button("Clear Segmentation Map")
|
181 |
+
clear_button_point.click(lambda: None, inputs=None, outputs=output_image_point)
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
# Example images below buttons
|
187 |
+
|
188 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cython
|
2 |
+
scipy
|
3 |
+
shapely
|
4 |
+
timm
|
5 |
+
h5py
|
6 |
+
submitit
|
7 |
+
scikit-image
|
8 |
+
Pillow==8.4.0
|
9 |
+
opencv-python
|
10 |
+
pycocotools~=2.0.4
|
11 |
+
open_clip_torch==2.16.0
|
12 |
+
|
13 |
+
# Torch
|
14 |
+
--find-links https://download.pytorch.org/whl/cu118/torch_stable.html
|
15 |
+
|
16 |
+
torch==2.3.1+cu118
|
17 |
+
torchvision==0.18.1+cu118
|
18 |
+
|
19 |
+
# Detectron
|
20 |
+
--find-links https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
|
21 |
+
detectron2
|
22 |
+
|
23 |
+
# Segment-anything
|
24 |
+
git+https://github.com/facebookresearch/sam2.git
|
25 |
+
|
26 |
+
# open_clip
|
train_net_fcclip.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
|
3 |
+
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
|
4 |
+
|
5 |
+
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py
|
6 |
+
|
7 |
+
FCCLIP Training Script.
|
8 |
+
|
9 |
+
This script is a simplified version of the training script in detectron2/tools.
|
10 |
+
"""
|
11 |
+
try:
|
12 |
+
# ignore ShapelyDeprecationWarning from fvcore
|
13 |
+
from shapely.errors import ShapelyDeprecationWarning
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
|
16 |
+
except:
|
17 |
+
pass
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import itertools
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
|
24 |
+
from collections import OrderedDict
|
25 |
+
from typing import Any, Dict, List, Set
|
26 |
+
|
27 |
+
import torch
|
28 |
+
|
29 |
+
import detectron2.utils.comm as comm
|
30 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
31 |
+
from detectron2.config import get_cfg
|
32 |
+
from detectron2.data import MetadataCatalog, build_detection_train_loader
|
33 |
+
from detectron2.engine import (
|
34 |
+
DefaultTrainer,
|
35 |
+
default_argument_parser,
|
36 |
+
default_setup,
|
37 |
+
launch,
|
38 |
+
)
|
39 |
+
from detectron2.evaluation import (
|
40 |
+
CityscapesInstanceEvaluator,
|
41 |
+
CityscapesSemSegEvaluator,
|
42 |
+
COCOEvaluator,
|
43 |
+
COCOPanopticEvaluator,
|
44 |
+
DatasetEvaluators,
|
45 |
+
LVISEvaluator,
|
46 |
+
SemSegEvaluator,
|
47 |
+
verify_results,
|
48 |
+
)
|
49 |
+
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
|
50 |
+
from detectron2.solver.build import maybe_add_gradient_clipping
|
51 |
+
from detectron2.utils.logger import setup_logger
|
52 |
+
|
53 |
+
from fcclip import (
|
54 |
+
COCOInstanceNewBaselineDatasetMapper,
|
55 |
+
COCOPanopticNewBaselineDatasetMapper,
|
56 |
+
InstanceSegEvaluator,
|
57 |
+
MaskFormerInstanceDatasetMapper,
|
58 |
+
MaskFormerPanopticDatasetMapper,
|
59 |
+
MaskFormerSemanticDatasetMapper,
|
60 |
+
SemanticSegmentorWithTTA,
|
61 |
+
add_maskformer2_config,
|
62 |
+
add_fcclip_config,
|
63 |
+
add_mask_adapter_config,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
class Trainer(DefaultTrainer):
|
68 |
+
"""
|
69 |
+
Extension of the Trainer class adapted to FCCLIP.
|
70 |
+
"""
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
74 |
+
"""
|
75 |
+
Create evaluator(s) for a given dataset.
|
76 |
+
This uses the special metadata "evaluator_type" associated with each
|
77 |
+
builtin dataset. For your own dataset, you can simply create an
|
78 |
+
evaluator manually in your script and do not have to worry about the
|
79 |
+
hacky if-else logic here.
|
80 |
+
"""
|
81 |
+
if output_folder is None:
|
82 |
+
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
83 |
+
evaluator_list = []
|
84 |
+
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
85 |
+
# semantic segmentation
|
86 |
+
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
|
87 |
+
evaluator_list.append(
|
88 |
+
SemSegEvaluator(
|
89 |
+
dataset_name,
|
90 |
+
distributed=True,
|
91 |
+
output_dir=output_folder,
|
92 |
+
)
|
93 |
+
)
|
94 |
+
# instance segmentation
|
95 |
+
if evaluator_type == "coco":
|
96 |
+
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
97 |
+
# panoptic segmentation
|
98 |
+
if evaluator_type in [
|
99 |
+
"coco_panoptic_seg",
|
100 |
+
"ade20k_panoptic_seg",
|
101 |
+
"cityscapes_panoptic_seg",
|
102 |
+
"mapillary_vistas_panoptic_seg",
|
103 |
+
]:
|
104 |
+
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
|
105 |
+
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
|
106 |
+
# COCO
|
107 |
+
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
108 |
+
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
109 |
+
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
110 |
+
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
|
111 |
+
# Mapillary Vistas
|
112 |
+
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
113 |
+
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
|
114 |
+
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
115 |
+
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
|
116 |
+
# Cityscapes
|
117 |
+
if evaluator_type == "cityscapes_instance":
|
118 |
+
assert (
|
119 |
+
torch.cuda.device_count() > comm.get_rank()
|
120 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
121 |
+
return CityscapesInstanceEvaluator(dataset_name)
|
122 |
+
if evaluator_type == "cityscapes_sem_seg":
|
123 |
+
assert (
|
124 |
+
torch.cuda.device_count() > comm.get_rank()
|
125 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
126 |
+
return CityscapesSemSegEvaluator(dataset_name)
|
127 |
+
if evaluator_type == "cityscapes_panoptic_seg":
|
128 |
+
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
129 |
+
assert (
|
130 |
+
torch.cuda.device_count() > comm.get_rank()
|
131 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
132 |
+
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
|
133 |
+
if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
134 |
+
assert (
|
135 |
+
torch.cuda.device_count() > comm.get_rank()
|
136 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
137 |
+
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
|
138 |
+
# ADE20K
|
139 |
+
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
140 |
+
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
|
141 |
+
# LVIS
|
142 |
+
if evaluator_type == "lvis":
|
143 |
+
return LVISEvaluator(dataset_name, output_dir=output_folder)
|
144 |
+
if len(evaluator_list) == 0:
|
145 |
+
raise NotImplementedError(
|
146 |
+
"no Evaluator for the dataset {} with the type {}".format(
|
147 |
+
dataset_name, evaluator_type
|
148 |
+
)
|
149 |
+
)
|
150 |
+
elif len(evaluator_list) == 1:
|
151 |
+
return evaluator_list[0]
|
152 |
+
return DatasetEvaluators(evaluator_list)
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def build_train_loader(cls, cfg):
|
156 |
+
# Semantic segmentation dataset mapper
|
157 |
+
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
158 |
+
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
|
159 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
160 |
+
# Panoptic segmentation dataset mapper
|
161 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
|
162 |
+
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
|
163 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
164 |
+
# Instance segmentation dataset mapper
|
165 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
|
166 |
+
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
|
167 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
168 |
+
# coco instance segmentation lsj new baseline
|
169 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
|
170 |
+
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
|
171 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
172 |
+
# coco panoptic segmentation lsj new baseline
|
173 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
|
174 |
+
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
|
175 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
176 |
+
else:
|
177 |
+
mapper = None
|
178 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
179 |
+
|
180 |
+
@classmethod
|
181 |
+
def build_lr_scheduler(cls, cfg, optimizer):
|
182 |
+
"""
|
183 |
+
It now calls :func:`detectron2.solver.build_lr_scheduler`.
|
184 |
+
Overwrite it if you'd like a different scheduler.
|
185 |
+
"""
|
186 |
+
return build_lr_scheduler(cfg, optimizer)
|
187 |
+
|
188 |
+
@classmethod
|
189 |
+
def build_optimizer(cls, cfg, model):
|
190 |
+
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
|
191 |
+
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
|
192 |
+
|
193 |
+
defaults = {}
|
194 |
+
defaults["lr"] = cfg.SOLVER.BASE_LR
|
195 |
+
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
|
196 |
+
|
197 |
+
norm_module_types = (
|
198 |
+
torch.nn.BatchNorm1d,
|
199 |
+
torch.nn.BatchNorm2d,
|
200 |
+
torch.nn.BatchNorm3d,
|
201 |
+
torch.nn.SyncBatchNorm,
|
202 |
+
# NaiveSyncBatchNorm inherits from BatchNorm2d
|
203 |
+
torch.nn.GroupNorm,
|
204 |
+
torch.nn.InstanceNorm1d,
|
205 |
+
torch.nn.InstanceNorm2d,
|
206 |
+
torch.nn.InstanceNorm3d,
|
207 |
+
torch.nn.LayerNorm,
|
208 |
+
torch.nn.LocalResponseNorm,
|
209 |
+
)
|
210 |
+
|
211 |
+
params: List[Dict[str, Any]] = []
|
212 |
+
memo: Set[torch.nn.parameter.Parameter] = set()
|
213 |
+
for module_name, module in model.named_modules():
|
214 |
+
for module_param_name, value in module.named_parameters(recurse=False):
|
215 |
+
if not value.requires_grad:
|
216 |
+
continue
|
217 |
+
# Avoid duplicating parameters
|
218 |
+
if value in memo:
|
219 |
+
continue
|
220 |
+
memo.add(value)
|
221 |
+
|
222 |
+
hyperparams = copy.copy(defaults)
|
223 |
+
if "backbone" in module_name:
|
224 |
+
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
|
225 |
+
if (
|
226 |
+
"relative_position_bias_table" in module_param_name
|
227 |
+
or "absolute_pos_embed" in module_param_name
|
228 |
+
):
|
229 |
+
print(module_param_name)
|
230 |
+
hyperparams["weight_decay"] = 0.0
|
231 |
+
if isinstance(module, norm_module_types):
|
232 |
+
hyperparams["weight_decay"] = weight_decay_norm
|
233 |
+
if isinstance(module, torch.nn.Embedding):
|
234 |
+
hyperparams["weight_decay"] = weight_decay_embed
|
235 |
+
params.append({"params": [value], **hyperparams})
|
236 |
+
|
237 |
+
def maybe_add_full_model_gradient_clipping(optim):
|
238 |
+
# detectron2 doesn't have full model gradient clipping now
|
239 |
+
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
|
240 |
+
enable = (
|
241 |
+
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
|
242 |
+
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
|
243 |
+
and clip_norm_val > 0.0
|
244 |
+
)
|
245 |
+
|
246 |
+
class FullModelGradientClippingOptimizer(optim):
|
247 |
+
def step(self, closure=None):
|
248 |
+
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
|
249 |
+
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
|
250 |
+
super().step(closure=closure)
|
251 |
+
|
252 |
+
return FullModelGradientClippingOptimizer if enable else optim
|
253 |
+
|
254 |
+
optimizer_type = cfg.SOLVER.OPTIMIZER
|
255 |
+
if optimizer_type == "SGD":
|
256 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
|
257 |
+
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
|
258 |
+
)
|
259 |
+
elif optimizer_type == "ADAMW":
|
260 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
|
261 |
+
params, cfg.SOLVER.BASE_LR
|
262 |
+
)
|
263 |
+
else:
|
264 |
+
raise NotImplementedError(f"no optimizer type {optimizer_type}")
|
265 |
+
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
|
266 |
+
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
|
267 |
+
return optimizer
|
268 |
+
|
269 |
+
@classmethod
|
270 |
+
def test_with_TTA(cls, cfg, model):
|
271 |
+
logger = logging.getLogger("detectron2.trainer")
|
272 |
+
# In the end of training, run an evaluation with TTA.
|
273 |
+
logger.info("Running inference with test-time augmentation ...")
|
274 |
+
model = SemanticSegmentorWithTTA(cfg, model)
|
275 |
+
evaluators = [
|
276 |
+
cls.build_evaluator(
|
277 |
+
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
|
278 |
+
)
|
279 |
+
for name in cfg.DATASETS.TEST
|
280 |
+
]
|
281 |
+
res = cls.test(cfg, model, evaluators)
|
282 |
+
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
|
283 |
+
return res
|
284 |
+
|
285 |
+
|
286 |
+
def setup(args):
|
287 |
+
"""
|
288 |
+
Create configs and perform basic setups.
|
289 |
+
"""
|
290 |
+
cfg = get_cfg()
|
291 |
+
# for poly lr schedule
|
292 |
+
add_deeplab_config(cfg)
|
293 |
+
add_maskformer2_config(cfg)
|
294 |
+
add_fcclip_config(cfg)
|
295 |
+
add_mask_adapter_config(cfg)
|
296 |
+
cfg.merge_from_file(args.config_file)
|
297 |
+
cfg.merge_from_list(args.opts)
|
298 |
+
cfg.freeze()
|
299 |
+
default_setup(cfg, args)
|
300 |
+
# Setup logger for "fcclip" module
|
301 |
+
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="fcclip")
|
302 |
+
return cfg
|
303 |
+
|
304 |
+
|
305 |
+
def main(args):
|
306 |
+
cfg = setup(args)
|
307 |
+
|
308 |
+
if args.eval_only:
|
309 |
+
model = Trainer.build_model(cfg)
|
310 |
+
|
311 |
+
total_params = sum(p.numel() for p in model.parameters())
|
312 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
313 |
+
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
314 |
+
frozen_params_exclude_text = 0
|
315 |
+
for n, p in model.named_parameters():
|
316 |
+
if p.requires_grad:
|
317 |
+
continue
|
318 |
+
# ignore text tower
|
319 |
+
if 'clip_model.token_embedding' in n or 'clip_model.positional_embedding' in n or 'clip_model.transformer' in n or 'clip_model.ln_final' in n or 'clip_model.text_projection' in n:
|
320 |
+
continue
|
321 |
+
frozen_params_exclude_text += p.numel()
|
322 |
+
print(f"total_params: {total_params}, trainable_params: {trainable_params}, frozen_params: {frozen_params}, frozen_params_exclude_text: {frozen_params_exclude_text}")
|
323 |
+
|
324 |
+
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
325 |
+
cfg.MODEL.WEIGHTS, resume=args.resume
|
326 |
+
)
|
327 |
+
res = Trainer.test(cfg, model)
|
328 |
+
if cfg.TEST.AUG.ENABLED:
|
329 |
+
res.update(Trainer.test_with_TTA(cfg, model))
|
330 |
+
if comm.is_main_process():
|
331 |
+
verify_results(cfg, res)
|
332 |
+
return res
|
333 |
+
|
334 |
+
trainer = Trainer(cfg)
|
335 |
+
trainer.resume_or_load(resume=args.resume)
|
336 |
+
return trainer.train()
|
337 |
+
|
338 |
+
|
339 |
+
if __name__ == "__main__":
|
340 |
+
args = default_argument_parser().parse_args()
|
341 |
+
print("Command Line Args:", args)
|
342 |
+
launch(
|
343 |
+
main,
|
344 |
+
args.num_gpus,
|
345 |
+
num_machines=args.num_machines,
|
346 |
+
machine_rank=args.machine_rank,
|
347 |
+
dist_url=args.dist_url,
|
348 |
+
args=(args,),
|
349 |
+
)
|
train_net_maftp.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
|
3 |
+
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
|
4 |
+
|
5 |
+
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py
|
6 |
+
|
7 |
+
MAFT-Plus Training Script.
|
8 |
+
|
9 |
+
This script is a simplified version of the training script in detectron2/tools.
|
10 |
+
"""
|
11 |
+
try:
|
12 |
+
# ignore ShapelyDeprecationWarning from fvcore
|
13 |
+
from shapely.errors import ShapelyDeprecationWarning
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
|
16 |
+
except:
|
17 |
+
pass
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import itertools
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '2,4,6'
|
24 |
+
|
25 |
+
from collections import OrderedDict
|
26 |
+
from typing import Any, Dict, List, Set
|
27 |
+
|
28 |
+
import torch
|
29 |
+
|
30 |
+
import detectron2.utils.comm as comm
|
31 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
32 |
+
from detectron2.config import get_cfg
|
33 |
+
from detectron2.data import MetadataCatalog, build_detection_train_loader
|
34 |
+
from detectron2.engine import (
|
35 |
+
DefaultTrainer,
|
36 |
+
default_argument_parser,
|
37 |
+
default_setup,
|
38 |
+
launch,
|
39 |
+
)
|
40 |
+
from detectron2.evaluation import (
|
41 |
+
CityscapesInstanceEvaluator,
|
42 |
+
CityscapesSemSegEvaluator,
|
43 |
+
COCOEvaluator,
|
44 |
+
COCOPanopticEvaluator,
|
45 |
+
DatasetEvaluators,
|
46 |
+
LVISEvaluator,
|
47 |
+
SemSegEvaluator,
|
48 |
+
verify_results,
|
49 |
+
)
|
50 |
+
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
|
51 |
+
from detectron2.solver.build import maybe_add_gradient_clipping
|
52 |
+
from detectron2.utils.logger import setup_logger
|
53 |
+
|
54 |
+
from maft import (
|
55 |
+
COCOInstanceNewBaselineDatasetMapper,
|
56 |
+
COCOPanopticNewBaselineDatasetMapper,
|
57 |
+
COCOSemanticNewBaselineDatasetMapper,
|
58 |
+
InstanceSegEvaluator,
|
59 |
+
#SemSegEvaluator,
|
60 |
+
MaskFormerInstanceDatasetMapper,
|
61 |
+
MaskFormerPanopticDatasetMapper,
|
62 |
+
MaskFormerSemanticDatasetMapper,
|
63 |
+
SemanticSegmentorWithTTA,
|
64 |
+
add_maskformer2_config,
|
65 |
+
add_fcclip_config,
|
66 |
+
add_mask_adapter_config,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class Trainer(DefaultTrainer):
|
71 |
+
"""
|
72 |
+
Extension of the Trainer class adapted to FCCLIP.
|
73 |
+
"""
|
74 |
+
|
75 |
+
@classmethod
|
76 |
+
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
77 |
+
"""
|
78 |
+
Create evaluator(s) for a given dataset.
|
79 |
+
This uses the special metadata "evaluator_type" associated with each
|
80 |
+
builtin dataset. For your own dataset, you can simply create an
|
81 |
+
evaluator manually in your script and do not have to worry about the
|
82 |
+
hacky if-else logic here.
|
83 |
+
"""
|
84 |
+
if output_folder is None:
|
85 |
+
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
86 |
+
evaluator_list = []
|
87 |
+
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
88 |
+
# semantic segmentation
|
89 |
+
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
90 |
+
evaluator_list.append(
|
91 |
+
SemSegEvaluator(
|
92 |
+
dataset_name,
|
93 |
+
distributed=True,
|
94 |
+
output_dir=output_folder,
|
95 |
+
)
|
96 |
+
)
|
97 |
+
# panoptic segmentation
|
98 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
|
99 |
+
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_dir=output_folder))
|
100 |
+
if len(evaluator_list) == 0:
|
101 |
+
raise NotImplementedError(
|
102 |
+
"no Evaluator for the dataset {} with the type {}".format(
|
103 |
+
dataset_name, evaluator_type
|
104 |
+
)
|
105 |
+
)
|
106 |
+
elif len(evaluator_list) == 1:
|
107 |
+
return evaluator_list[0]
|
108 |
+
return DatasetEvaluators(evaluator_list)
|
109 |
+
|
110 |
+
@classmethod
|
111 |
+
def build_train_loader(cls, cfg):
|
112 |
+
# Semantic segmentation dataset mapper
|
113 |
+
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
114 |
+
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
|
115 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
116 |
+
# Panoptic segmentation dataset mapper
|
117 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
|
118 |
+
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
|
119 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
120 |
+
# Instance segmentation dataset mapper
|
121 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
|
122 |
+
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
|
123 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
124 |
+
# coco instance segmentation lsj new baseline
|
125 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
|
126 |
+
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
|
127 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
128 |
+
# coco panoptic segmentation lsj new baseline
|
129 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
|
130 |
+
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
|
131 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
132 |
+
# coco panoptic segmentation lsj new baseline
|
133 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_semantic_lsj":
|
134 |
+
mapper = COCOSemanticNewBaselineDatasetMapper(cfg, True)
|
135 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
136 |
+
|
137 |
+
else:
|
138 |
+
mapper = None
|
139 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def build_lr_scheduler(cls, cfg, optimizer):
|
143 |
+
"""
|
144 |
+
It now calls :func:`detectron2.solver.build_lr_scheduler`.
|
145 |
+
Overwrite it if you'd like a different scheduler.
|
146 |
+
"""
|
147 |
+
return build_lr_scheduler(cfg, optimizer)
|
148 |
+
|
149 |
+
@classmethod
|
150 |
+
def build_optimizer(cls, cfg, model):
|
151 |
+
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
|
152 |
+
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
|
153 |
+
|
154 |
+
defaults = {}
|
155 |
+
defaults["lr"] = cfg.SOLVER.BASE_LR
|
156 |
+
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
|
157 |
+
|
158 |
+
norm_module_types = (
|
159 |
+
torch.nn.BatchNorm1d,
|
160 |
+
torch.nn.BatchNorm2d,
|
161 |
+
torch.nn.BatchNorm3d,
|
162 |
+
torch.nn.SyncBatchNorm,
|
163 |
+
# NaiveSyncBatchNorm inherits from BatchNorm2d
|
164 |
+
torch.nn.GroupNorm,
|
165 |
+
torch.nn.InstanceNorm1d,
|
166 |
+
torch.nn.InstanceNorm2d,
|
167 |
+
torch.nn.InstanceNorm3d,
|
168 |
+
torch.nn.LayerNorm,
|
169 |
+
torch.nn.LocalResponseNorm,
|
170 |
+
)
|
171 |
+
|
172 |
+
params: List[Dict[str, Any]] = []
|
173 |
+
memo: Set[torch.nn.parameter.Parameter] = set()
|
174 |
+
for module_name, module in model.named_modules():
|
175 |
+
for module_param_name, value in module.named_parameters(recurse=False):
|
176 |
+
if not value.requires_grad:
|
177 |
+
continue
|
178 |
+
# Avoid duplicating parameters
|
179 |
+
if value in memo:
|
180 |
+
continue
|
181 |
+
memo.add(value)
|
182 |
+
|
183 |
+
hyperparams = copy.copy(defaults)
|
184 |
+
if "backbone" in module_name:
|
185 |
+
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
|
186 |
+
if (
|
187 |
+
"relative_position_bias_table" in module_param_name
|
188 |
+
or "absolute_pos_embed" in module_param_name
|
189 |
+
):
|
190 |
+
print(module_param_name)
|
191 |
+
hyperparams["weight_decay"] = 0.0
|
192 |
+
if isinstance(module, norm_module_types):
|
193 |
+
hyperparams["weight_decay"] = weight_decay_norm
|
194 |
+
if isinstance(module, torch.nn.Embedding):
|
195 |
+
hyperparams["weight_decay"] = weight_decay_embed
|
196 |
+
params.append({"params": [value], **hyperparams})
|
197 |
+
|
198 |
+
def maybe_add_full_model_gradient_clipping(optim):
|
199 |
+
# detectron2 doesn't have full model gradient clipping now
|
200 |
+
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
|
201 |
+
enable = (
|
202 |
+
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
|
203 |
+
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
|
204 |
+
and clip_norm_val > 0.0
|
205 |
+
)
|
206 |
+
|
207 |
+
class FullModelGradientClippingOptimizer(optim):
|
208 |
+
def step(self, closure=None):
|
209 |
+
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
|
210 |
+
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
|
211 |
+
super().step(closure=closure)
|
212 |
+
|
213 |
+
return FullModelGradientClippingOptimizer if enable else optim
|
214 |
+
|
215 |
+
optimizer_type = cfg.SOLVER.OPTIMIZER
|
216 |
+
if optimizer_type == "SGD":
|
217 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
|
218 |
+
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
|
219 |
+
)
|
220 |
+
elif optimizer_type == "ADAMW":
|
221 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
|
222 |
+
params, cfg.SOLVER.BASE_LR
|
223 |
+
)
|
224 |
+
else:
|
225 |
+
raise NotImplementedError(f"no optimizer type {optimizer_type}")
|
226 |
+
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
|
227 |
+
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
|
228 |
+
return optimizer
|
229 |
+
|
230 |
+
@classmethod
|
231 |
+
def test_with_TTA(cls, cfg, model):
|
232 |
+
logger = logging.getLogger("detectron2.trainer")
|
233 |
+
# In the end of training, run an evaluation with TTA.
|
234 |
+
logger.info("Running inference with test-time augmentation ...")
|
235 |
+
model = SemanticSegmentorWithTTA(cfg, model)
|
236 |
+
evaluators = [
|
237 |
+
cls.build_evaluator(
|
238 |
+
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
|
239 |
+
)
|
240 |
+
for name in cfg.DATASETS.TEST
|
241 |
+
]
|
242 |
+
res = cls.test(cfg, model, evaluators)
|
243 |
+
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
|
244 |
+
return res
|
245 |
+
|
246 |
+
|
247 |
+
def setup(args):
|
248 |
+
"""
|
249 |
+
Create configs and perform basic setups.
|
250 |
+
"""
|
251 |
+
cfg = get_cfg()
|
252 |
+
# for poly lr schedule
|
253 |
+
add_deeplab_config(cfg)
|
254 |
+
add_maskformer2_config(cfg)
|
255 |
+
add_fcclip_config(cfg)
|
256 |
+
add_mask_adapter_config(cfg)
|
257 |
+
cfg.merge_from_file(args.config_file)
|
258 |
+
cfg.merge_from_list(args.opts)
|
259 |
+
cfg.merge_from_list(['SEED', 123])
|
260 |
+
cfg.freeze()
|
261 |
+
default_setup(cfg, args)
|
262 |
+
# Setup logger for "maft-plus" module
|
263 |
+
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="maft-plus")
|
264 |
+
return cfg
|
265 |
+
|
266 |
+
|
267 |
+
def main(args):
|
268 |
+
# torch.multiprocessing.set_start_method('spawn')
|
269 |
+
cfg = setup(args)
|
270 |
+
|
271 |
+
if args.eval_only:
|
272 |
+
model = Trainer.build_model(cfg)
|
273 |
+
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
274 |
+
cfg.MODEL.WEIGHTS, resume=args.resume
|
275 |
+
)
|
276 |
+
res = Trainer.test(cfg, model)
|
277 |
+
if cfg.TEST.AUG.ENABLED:
|
278 |
+
res.update(Trainer.test_with_TTA(cfg, model))
|
279 |
+
if comm.is_main_process():
|
280 |
+
verify_results(cfg, res)
|
281 |
+
return res
|
282 |
+
|
283 |
+
trainer = Trainer(cfg)
|
284 |
+
trainer.resume_or_load(resume=args.resume)
|
285 |
+
return trainer.train()
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == "__main__":
|
289 |
+
args = default_argument_parser().parse_args()
|
290 |
+
print("Command Line Args:", args)
|
291 |
+
launch(
|
292 |
+
main,
|
293 |
+
args.num_gpus,
|
294 |
+
num_machines=args.num_machines,
|
295 |
+
machine_rank=args.machine_rank,
|
296 |
+
dist_url=args.dist_url,
|
297 |
+
args=(args,),
|
298 |
+
)
|
train_net_maskadapter.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
|
3 |
+
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
|
4 |
+
|
5 |
+
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py
|
6 |
+
|
7 |
+
FCCLIP Training Script.
|
8 |
+
|
9 |
+
This script is a simplified version of the training script in detectron2/tools.
|
10 |
+
"""
|
11 |
+
try:
|
12 |
+
# ignore ShapelyDeprecationWarning from fvcore
|
13 |
+
from shapely.errors import ShapelyDeprecationWarning
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
|
16 |
+
except:
|
17 |
+
pass
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import itertools
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
|
24 |
+
from collections import OrderedDict
|
25 |
+
from typing import Any, Dict, List, Set
|
26 |
+
|
27 |
+
import torch
|
28 |
+
|
29 |
+
import detectron2.utils.comm as comm
|
30 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
31 |
+
from detectron2.config import get_cfg
|
32 |
+
from detectron2.data import MetadataCatalog, build_detection_train_loader
|
33 |
+
from detectron2.engine import (
|
34 |
+
DefaultTrainer,
|
35 |
+
default_argument_parser,
|
36 |
+
default_setup,
|
37 |
+
launch,
|
38 |
+
)
|
39 |
+
from detectron2.evaluation import (
|
40 |
+
CityscapesInstanceEvaluator,
|
41 |
+
CityscapesSemSegEvaluator,
|
42 |
+
COCOEvaluator,
|
43 |
+
COCOPanopticEvaluator,
|
44 |
+
DatasetEvaluators,
|
45 |
+
LVISEvaluator,
|
46 |
+
SemSegEvaluator,
|
47 |
+
verify_results,
|
48 |
+
)
|
49 |
+
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
|
50 |
+
from detectron2.solver.build import maybe_add_gradient_clipping
|
51 |
+
from detectron2.utils.logger import setup_logger
|
52 |
+
|
53 |
+
from mask_adapter import (
|
54 |
+
COCOInstanceNewBaselineDatasetMapper,
|
55 |
+
COCOPanopticNewBaselineDatasetMapper,
|
56 |
+
InstanceSegEvaluator,
|
57 |
+
MaskFormerInstanceDatasetMapper,
|
58 |
+
MaskFormerPanopticDatasetMapper,
|
59 |
+
MaskFormerSemanticDatasetMapper,
|
60 |
+
SemanticSegmentorWithTTA,
|
61 |
+
add_maskformer2_config,
|
62 |
+
add_fcclip_config,
|
63 |
+
add_mask_adapter_config
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
class Trainer(DefaultTrainer):
|
68 |
+
"""
|
69 |
+
Extension of the Trainer class adapted to FCCLIP.
|
70 |
+
"""
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
74 |
+
"""
|
75 |
+
Create evaluator(s) for a given dataset.
|
76 |
+
This uses the special metadata "evaluator_type" associated with each
|
77 |
+
builtin dataset. For your own dataset, you can simply create an
|
78 |
+
evaluator manually in your script and do not have to worry about the
|
79 |
+
hacky if-else logic here.
|
80 |
+
"""
|
81 |
+
if output_folder is None:
|
82 |
+
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
83 |
+
evaluator_list = []
|
84 |
+
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
85 |
+
# semantic segmentation
|
86 |
+
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
|
87 |
+
evaluator_list.append(
|
88 |
+
SemSegEvaluator(
|
89 |
+
dataset_name,
|
90 |
+
distributed=True,
|
91 |
+
output_dir=output_folder,
|
92 |
+
)
|
93 |
+
)
|
94 |
+
# instance segmentation
|
95 |
+
if evaluator_type == "coco":
|
96 |
+
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
97 |
+
# panoptic segmentation
|
98 |
+
if evaluator_type in [
|
99 |
+
"coco_panoptic_seg",
|
100 |
+
"ade20k_panoptic_seg",
|
101 |
+
"cityscapes_panoptic_seg",
|
102 |
+
"mapillary_vistas_panoptic_seg",
|
103 |
+
]:
|
104 |
+
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
|
105 |
+
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
|
106 |
+
# COCO
|
107 |
+
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
108 |
+
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
109 |
+
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
110 |
+
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
|
111 |
+
# Mapillary Vistas
|
112 |
+
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
113 |
+
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
|
114 |
+
if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
115 |
+
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
|
116 |
+
# Cityscapes
|
117 |
+
if evaluator_type == "cityscapes_instance":
|
118 |
+
assert (
|
119 |
+
torch.cuda.device_count() > comm.get_rank()
|
120 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
121 |
+
return CityscapesInstanceEvaluator(dataset_name)
|
122 |
+
if evaluator_type == "cityscapes_sem_seg":
|
123 |
+
assert (
|
124 |
+
torch.cuda.device_count() > comm.get_rank()
|
125 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
126 |
+
return CityscapesSemSegEvaluator(dataset_name)
|
127 |
+
if evaluator_type == "cityscapes_panoptic_seg":
|
128 |
+
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
129 |
+
assert (
|
130 |
+
torch.cuda.device_count() > comm.get_rank()
|
131 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
132 |
+
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
|
133 |
+
if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
134 |
+
assert (
|
135 |
+
torch.cuda.device_count() > comm.get_rank()
|
136 |
+
), "CityscapesEvaluator currently do not work with multiple machines."
|
137 |
+
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
|
138 |
+
# ADE20K
|
139 |
+
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
140 |
+
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
|
141 |
+
# LVIS
|
142 |
+
if evaluator_type == "lvis":
|
143 |
+
return LVISEvaluator(dataset_name, output_dir=output_folder)
|
144 |
+
if len(evaluator_list) == 0:
|
145 |
+
raise NotImplementedError(
|
146 |
+
"no Evaluator for the dataset {} with the type {}".format(
|
147 |
+
dataset_name, evaluator_type
|
148 |
+
)
|
149 |
+
)
|
150 |
+
elif len(evaluator_list) == 1:
|
151 |
+
return evaluator_list[0]
|
152 |
+
return DatasetEvaluators(evaluator_list)
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def build_train_loader(cls, cfg):
|
156 |
+
# Semantic segmentation dataset mapper
|
157 |
+
if cfg.DATALOADER.SAMPLER_TRAIN == "MultiDatasetSampler":
|
158 |
+
mapper = COCOCombineNewBaselineDatasetMapper(cfg, True)
|
159 |
+
data_loader = build_custom_train_loader(cfg, mapper=mapper)
|
160 |
+
return data_loader
|
161 |
+
else:
|
162 |
+
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
163 |
+
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
|
164 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
165 |
+
# Panoptic segmentation dataset mapper
|
166 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
|
167 |
+
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
|
168 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
169 |
+
# Instance segmentation dataset mapper
|
170 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
|
171 |
+
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
|
172 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
173 |
+
# coco instance segmentation lsj new baseline
|
174 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
|
175 |
+
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
|
176 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
177 |
+
# coco panoptic segmentation lsj new baseline
|
178 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj":
|
179 |
+
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True)
|
180 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
181 |
+
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_combine_lsj":
|
182 |
+
mapper = COCOCombineNewBaselineDatasetMapper(cfg, True)
|
183 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
184 |
+
# elif cfg.INPUT.DATASET_MAPPER_NAME == "grand_panoptic_lsj":
|
185 |
+
# mapper = GrandNewBaselineDatasetMapper(cfg, True)
|
186 |
+
# return build_detection_train_loader(cfg, mapper=mapper)
|
187 |
+
else:
|
188 |
+
mapper = None
|
189 |
+
return build_detection_train_loader(cfg, mapper=mapper)
|
190 |
+
|
191 |
+
@classmethod
|
192 |
+
def build_lr_scheduler(cls, cfg, optimizer):
|
193 |
+
"""
|
194 |
+
It now calls :func:`detectron2.solver.build_lr_scheduler`.
|
195 |
+
Overwrite it if you'd like a different scheduler.
|
196 |
+
"""
|
197 |
+
return build_lr_scheduler(cfg, optimizer)
|
198 |
+
|
199 |
+
@classmethod
|
200 |
+
def build_optimizer(cls, cfg, model):
|
201 |
+
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
|
202 |
+
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
|
203 |
+
|
204 |
+
defaults = {}
|
205 |
+
defaults["lr"] = cfg.SOLVER.BASE_LR
|
206 |
+
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
|
207 |
+
|
208 |
+
norm_module_types = (
|
209 |
+
torch.nn.BatchNorm1d,
|
210 |
+
torch.nn.BatchNorm2d,
|
211 |
+
torch.nn.BatchNorm3d,
|
212 |
+
torch.nn.SyncBatchNorm,
|
213 |
+
# NaiveSyncBatchNorm inherits from BatchNorm2d
|
214 |
+
torch.nn.GroupNorm,
|
215 |
+
torch.nn.InstanceNorm1d,
|
216 |
+
torch.nn.InstanceNorm2d,
|
217 |
+
torch.nn.InstanceNorm3d,
|
218 |
+
torch.nn.LayerNorm,
|
219 |
+
torch.nn.LocalResponseNorm,
|
220 |
+
)
|
221 |
+
|
222 |
+
params: List[Dict[str, Any]] = []
|
223 |
+
memo: Set[torch.nn.parameter.Parameter] = set()
|
224 |
+
for module_name, module in model.named_modules():
|
225 |
+
for module_param_name, value in module.named_parameters(recurse=False):
|
226 |
+
if not value.requires_grad:
|
227 |
+
continue
|
228 |
+
# Avoid duplicating parameters
|
229 |
+
if value in memo:
|
230 |
+
continue
|
231 |
+
memo.add(value)
|
232 |
+
|
233 |
+
hyperparams = copy.copy(defaults)
|
234 |
+
if "backbone" in module_name:
|
235 |
+
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
|
236 |
+
if (
|
237 |
+
"relative_position_bias_table" in module_param_name
|
238 |
+
or "absolute_pos_embed" in module_param_name
|
239 |
+
):
|
240 |
+
print(module_param_name)
|
241 |
+
hyperparams["weight_decay"] = 0.0
|
242 |
+
if isinstance(module, norm_module_types):
|
243 |
+
hyperparams["weight_decay"] = weight_decay_norm
|
244 |
+
if isinstance(module, torch.nn.Embedding):
|
245 |
+
hyperparams["weight_decay"] = weight_decay_embed
|
246 |
+
params.append({"params": [value], **hyperparams})
|
247 |
+
|
248 |
+
def maybe_add_full_model_gradient_clipping(optim):
|
249 |
+
# detectron2 doesn't have full model gradient clipping now
|
250 |
+
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
|
251 |
+
enable = (
|
252 |
+
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
|
253 |
+
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
|
254 |
+
and clip_norm_val > 0.0
|
255 |
+
)
|
256 |
+
|
257 |
+
class FullModelGradientClippingOptimizer(optim):
|
258 |
+
def step(self, closure=None):
|
259 |
+
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
|
260 |
+
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
|
261 |
+
super().step(closure=closure)
|
262 |
+
|
263 |
+
return FullModelGradientClippingOptimizer if enable else optim
|
264 |
+
|
265 |
+
optimizer_type = cfg.SOLVER.OPTIMIZER
|
266 |
+
if optimizer_type == "SGD":
|
267 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
|
268 |
+
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
|
269 |
+
)
|
270 |
+
elif optimizer_type == "ADAMW":
|
271 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
|
272 |
+
params, cfg.SOLVER.BASE_LR
|
273 |
+
)
|
274 |
+
else:
|
275 |
+
raise NotImplementedError(f"no optimizer type {optimizer_type}")
|
276 |
+
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
|
277 |
+
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
|
278 |
+
return optimizer
|
279 |
+
|
280 |
+
@classmethod
|
281 |
+
def test_with_TTA(cls, cfg, model):
|
282 |
+
logger = logging.getLogger("detectron2.trainer")
|
283 |
+
# In the end of training, run an evaluation with TTA.
|
284 |
+
logger.info("Running inference with test-time augmentation ...")
|
285 |
+
model = SemanticSegmentorWithTTA(cfg, model)
|
286 |
+
evaluators = [
|
287 |
+
cls.build_evaluator(
|
288 |
+
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
|
289 |
+
)
|
290 |
+
for name in cfg.DATASETS.TEST
|
291 |
+
]
|
292 |
+
res = cls.test(cfg, model, evaluators)
|
293 |
+
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
|
294 |
+
return res
|
295 |
+
|
296 |
+
|
297 |
+
def setup(args):
|
298 |
+
"""
|
299 |
+
Create configs and perform basic setups.
|
300 |
+
"""
|
301 |
+
cfg = get_cfg()
|
302 |
+
# for poly lr schedule
|
303 |
+
add_deeplab_config(cfg)
|
304 |
+
add_maskformer2_config(cfg)
|
305 |
+
add_fcclip_config(cfg)
|
306 |
+
add_mask_adapter_config(cfg)
|
307 |
+
cfg.merge_from_file(args.config_file)
|
308 |
+
cfg.merge_from_list(args.opts)
|
309 |
+
cfg.freeze()
|
310 |
+
default_setup(cfg, args)
|
311 |
+
# Setup logger for "fcclip" module
|
312 |
+
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="fcclip")
|
313 |
+
return cfg
|
314 |
+
|
315 |
+
|
316 |
+
def main(args):
|
317 |
+
cfg = setup(args)
|
318 |
+
|
319 |
+
if args.eval_only:
|
320 |
+
model = Trainer.build_model(cfg)
|
321 |
+
|
322 |
+
total_params = sum(p.numel() for p in model.parameters())
|
323 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
324 |
+
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
325 |
+
frozen_params_exclude_text = 0
|
326 |
+
for n, p in model.named_parameters():
|
327 |
+
if p.requires_grad:
|
328 |
+
continue
|
329 |
+
# ignore text tower
|
330 |
+
if 'clip_model.token_embedding' in n or 'clip_model.positional_embedding' in n or 'clip_model.transformer' in n or 'clip_model.ln_final' in n or 'clip_model.text_projection' in n:
|
331 |
+
continue
|
332 |
+
frozen_params_exclude_text += p.numel()
|
333 |
+
print(f"total_params: {total_params}, trainable_params: {trainable_params}, frozen_params: {frozen_params}, frozen_params_exclude_text: {frozen_params_exclude_text}")
|
334 |
+
|
335 |
+
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
336 |
+
cfg.MODEL.WEIGHTS, resume=args.resume
|
337 |
+
)
|
338 |
+
res = Trainer.test(cfg, model)
|
339 |
+
if cfg.TEST.AUG.ENABLED:
|
340 |
+
res.update(Trainer.test_with_TTA(cfg, model))
|
341 |
+
if comm.is_main_process():
|
342 |
+
verify_results(cfg, res)
|
343 |
+
return res
|
344 |
+
|
345 |
+
trainer = Trainer(cfg)
|
346 |
+
trainer.resume_or_load(resume=args.resume)
|
347 |
+
return trainer.train()
|
348 |
+
|
349 |
+
|
350 |
+
if __name__ == "__main__":
|
351 |
+
args = default_argument_parser().parse_args()
|
352 |
+
print("Command Line Args:", args)
|
353 |
+
launch(
|
354 |
+
main,
|
355 |
+
args.num_gpus,
|
356 |
+
num_machines=args.num_machines,
|
357 |
+
machine_rank=args.machine_rank,
|
358 |
+
dist_url=args.dist_url,
|
359 |
+
args=(args,),
|
360 |
+
)
|