import multiprocessing as mp import numpy as np from PIL import Image import torch try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data.detection_utils import read_image from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo import gradio as gr import gdown import open_clip from sam2.build_sam import build_sam2 from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter # ckpt_url = 'https://drive.google.com/uc?id=1cn-ohxgXDrDfkzC1QdO-fi8IjbjXmgKy' # output = './ovseg_swinbase_vitL14_ft_mpt.pth' # gdown.download(ckpt_url, output, quiet=False) def setup_cfg(config_file): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_maskformer2_config(cfg) add_fcclip_config(cfg) add_mask_adapter_config(cfg) cfg.merge_from_file(config_file) cfg.freeze() return cfg def inference_automatic(input_img, class_names): mp.set_start_method("spawn", force=True) config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' cfg = setup_cfg(config_file) demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter) class_names = class_names.split(',') img = read_image(input_img, format="BGR") _, visualized_output = demo.run_on_image(img, class_names) return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB') def inference_point(input_img, evt: gr.SelectData,): # In point mode, implement the logic to process points from the user click (x, y) # You can adjust your segmentation logic based on clicked points. x, y = evt.index[0], evt.index[1] points = [[x, y]] # 假设只选择一个点作为输入 print(f"Selected point: {points}") import time start_time = time.time() mp.set_start_method("spawn", force=True) config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' cfg = setup_cfg(config_file) demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter) end_time = time.time() print("init time",end_time - start_time) start_time = time.time() img = read_image(input_img, format="BGR") # Assume 'points' is a list of (x, y) coordinates to specify where the user clicks # Process the image and points to create a segmentation map accordingly _, visualized_output = demo.run_on_image_with_points(img, points) end_time = time.time() print("inf time",end_time - start_time) return visualized_output sam2_model = None clip_model = None mask_adapter = None # 加载和初始化函数 def initialize_models(sam_path, adapter_pth, model_cfg, cfg): cfg = setup_cfg(cfg) global sam2_model, clip_model, mask_adapter # SAM2初始化 if sam2_model is None: sam2_model = build_sam2(model_cfg, sam_path, device="cuda", apply_postprocessing=False) print("SAM2 model initialized.") # CLIP模型初始化 if clip_model is None: clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup") print("CLIP model initialized.") # Mask Adapter模型初始化 if mask_adapter is None: mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").cuda() # 加载Adapter状态字典 adapter_state_dict = torch.load(adapter_pth) adapter_state_dict = {k.replace('mask_adapter.', '').replace('adapter.', ''): v for k, v in adapter_state_dict["model"].items() if k.startswith('adapter') or k.startswith('mask_adapter')} mask_adapter.load_state_dict(adapter_state_dict) print("Mask Adapter model initialized.") # 初始化配置和模型 model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" sam_path = '/home/yongkangli/segment-anything-2/checkpoints/sam2.1_hiera_large.pt' adapter_pth = './model_0279999_with_sem_new.pth' cfg = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' # 调用初始化函数 initialize_models(sam_path, adapter_pth, model_cfg, cfg) # Examples for testing examples = [ ['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'], ['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'], ['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'], ] output_labels = ['segmentation map'] title = '

Mask-Adapter + Segment Anything-2

' description = """ Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.
arXiv Paper GitHub Code
""" # Interface with mode selection using Tabs with gr.Blocks() as demo: gr.Markdown(title) # Title gr.Markdown(description) # Description with gr.Tabs(): with gr.TabItem("Automatic Mode"): with gr.Row(): with gr.Column(): input_image = gr.Image(type='filepath', label="Input Image") class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names') with gr.Column(): output_image = gr.Image(type="pil", label='Segmentation Map') # Buttons below segmentation map (now placed under segmentation map) run_button = gr.Button("Run Automatic Segmentation") run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image) clear_button = gr.Button("Clear") clear_button.click(lambda: None, inputs=None, outputs=output_image) with gr.Row(): gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image) with gr.TabItem("Point Mode"): with gr.Row(): # 水平排列 with gr.Column(): input_image = gr.Image(type='filepath', label="Upload Image", interactive=True) # 上传图片并允许交互 points_input = gr.State(value=[]) # 用于存储点击的点 with gr.Column(): # 第二列:分割图输出 output_image_point = gr.Image(type="pil", label='Segmentation Map') # 输出分割图 # 直接使用 `SelectData` 事件触发 `inference_point` input_image.select(inference_point, inputs=[input_image], outputs=output_image_point) # 清除分割图的按钮 clear_button_point = gr.Button("Clear Segmentation Map") clear_button_point.click(lambda: None, inputs=None, outputs=output_image_point) # Example images below buttons demo.launch()