## Some code was modified from Ovseg and OV-Sam.Thanks to their excellent work. ## Ovseg Code:https://github.com/facebookresearch/ov-seg ## OV-Sam Code:https://github.com/HarborYuan/ovsam import spaces import multiprocessing as mp import numpy as np from PIL import Image,ImageDraw import torch try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data.detection_utils import read_image from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo import gradio as gr import open_clip from sam2.build_sam import build_sam2 from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter from mask_adapter.data.datasets import openseg_classes COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng() stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan] ADE20K_150_CATEGORIES_ = openseg_classes.get_ade20k_categories_with_prompt_eng() ade20k_stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES_] class_names_coco_ade20k = stuff_classes + ade20k_stuff_classes def setup_cfg(config_file): cfg = get_cfg() add_deeplab_config(cfg) add_maskformer2_config(cfg) add_fcclip_config(cfg) add_mask_adapter_config(cfg) cfg.merge_from_file(config_file) cfg.freeze() return cfg class IMGState: def __init__(self): self.img = None self.selected_points = [] self.selected_points_labels = [] self.selected_bboxes = [] self.available_to_set = True def set_img(self, img): self.img = img self.available_to_set = False def clear(self): self.img = None self.selected_points = [] self.selected_points_labels = [] self.selected_bboxes = [] self.available_to_set = True def clean(self): self.selected_points = [] self.selected_points_labels = [] self.selected_bboxes = [] @property def available(self): return self.available_to_set @spaces.GPU @torch.no_grad() @torch.autocast(device_type="cuda", dtype=torch.float32) def inference_automatic(input_img, class_names): mp.set_start_method("spawn", force=True) config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' cfg = setup_cfg(config_file) demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter) class_names = class_names.split(',') img = read_image(input_img, format="BGR") if len(class_names) == 1: class_names.append('others') txts = [f'a photo of {cls_name}' for cls_name in class_names] text = open_clip.tokenize(txts) text_features = clip_model.encode_text(text.cuda()) text_features /= text_features.norm(dim=-1, keepdim=True) _, visualized_output = demo.run_on_image(img, class_names,text_features) return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB') @spaces.GPU @torch.no_grad() @torch.autocast(device_type="cuda", dtype=torch.float32) def inference_point(input_img, img_state,class_names_input): mp.set_start_method("spawn", force=True) points = img_state.selected_points print(f"Selected point: {points}") config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' cfg = setup_cfg(config_file) demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter) if not class_names_input: class_names_input = class_names_coco_ade20k if class_names_input == class_names_coco_ade20k: text_features = torch.from_numpy(np.load("./text_embedding/coco_ade20k_text_embedding_new.npy")).cuda() _, visualized_output = demo.run_on_image_with_points(img_state.img, points,text_features) else: class_names_input = class_names_input.split(',') txts = [f'a photo of {cls_name}' for cls_name in class_names_input] text = open_clip.tokenize(txts) text_features = clip_model.encode_text(text.cuda()) text_features /= text_features.norm(dim=-1, keepdim=True) _, visualized_output = demo.run_on_image_with_points(img_state.img, points,text_features,class_names_input) return visualized_output sam2_model = None clip_model = None mask_adapter = None @spaces.GPU @torch.no_grad() @torch.autocast(device_type="cuda", dtype=torch.float32) def inference_box(input_img, img_state,class_names_input): # if len(img_state.selected_bboxes) != 2: # return None mp.set_start_method("spawn", force=True) box_points = img_state.selected_bboxes bbox = ( min(box_points[0][0], box_points[1][0]), min(box_points[0][1], box_points[1][1]), max(box_points[0][0], box_points[1][0]), max(box_points[0][1], box_points[1][1]), ) bbox = np.array(bbox) config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' cfg = setup_cfg(config_file) demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter) if not class_names_input: class_names_input = class_names_coco_ade20k if class_names_input == class_names_coco_ade20k: text_features = torch.from_numpy(np.load("./text_embedding/coco_ade20k_text_embedding_new.npy")).cuda() _, visualized_output = demo.run_on_image_with_boxes(img_state.img, bbox,text_features) else: class_names_input = class_names_input.split(',') txts = [f'a photo of {cls_name}' for cls_name in class_names_input] text = open_clip.tokenize(txts) text_features = clip_model.encode_text(text.cuda()) text_features /= text_features.norm(dim=-1, keepdim=True) _, visualized_output = demo.run_on_image_with_boxes(img_state.img, bbox,text_features,class_names_input) return visualized_output def get_points_with_draw(image, img_state, evt: gr.SelectData): label = 'Add Mask' x, y = evt.index[0], evt.index[1] point_radius, point_color = 10, (97, 217, 54) if label == "Add Mask" else (237, 34, 13) img_state.selected_points.append([x, y]) img_state.selected_points_labels.append(1 if label == "Add Mask" else 0) if img_state.img is None: img_state.set_img(np.array(image)) draw = ImageDraw.Draw(image) draw.polygon( [ (x, y - point_radius), (x + point_radius * 0.25, y - point_radius * 0.25), (x + point_radius, y), (x + point_radius * 0.25, y + point_radius * 0.25), (x, y + point_radius), (x - point_radius * 0.25, y + point_radius * 0.25), (x - point_radius, y), (x - point_radius * 0.25, y - point_radius * 0.25) ], fill=point_color, ) return img_state, image def get_bbox_with_draw(image, img_state, evt: gr.SelectData): x, y = evt.index[0], evt.index[1] point_radius, point_color, box_outline = 5, (237, 34, 13), 2 box_color = (237, 34, 13) if len(img_state.selected_bboxes) in [0, 1]: img_state.selected_bboxes.append([x, y]) elif len(img_state.selected_bboxes) == 2: img_state.selected_bboxes = [[x, y]] image = Image.fromarray(img_state.img) else: raise ValueError(f"Cannot be {len(img_state.selected_bboxes)}") if img_state.img is None: img_state.set_img(np.array(image)) draw = ImageDraw.Draw(image) draw.ellipse( [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color, ) if len(img_state.selected_bboxes) == 2: box_points = img_state.selected_bboxes bbox = (min(box_points[0][0], box_points[1][0]), min(box_points[0][1], box_points[1][1]), max(box_points[0][0], box_points[1][0]), max(box_points[0][1], box_points[1][1]), ) draw.rectangle( bbox, outline=box_color, width=box_outline ) return img_state, image def check_and_infer_box(input_image, img_state_bbox,class_names_input_box): if len(img_state_bbox.selected_bboxes) == 2: return inference_box(input_image, img_state_bbox, class_names_input_box) return None def initialize_models(sam_path, adapter_pth, model_cfg, cfg): cfg = setup_cfg(cfg) global sam2_model, clip_model, mask_adapter if sam2_model is None: sam2_model = build_sam2(model_cfg, sam_path, device="cpu", apply_postprocessing=False) sam2_model = sam2_model.to("cuda") print("SAM2 model initialized.") if clip_model is None: clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup") clip_model = clip_model.eval() clip_model = clip_model.to("cuda") print("CLIP model initialized.") if mask_adapter is None: mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").to("cuda") mask_adapter = mask_adapter.eval() adapter_state_dict = torch.load(adapter_pth) mask_adapter.load_state_dict(adapter_state_dict) print("Mask Adapter model initialized.") def preprocess_example(input_img, img_state): img_state.clear() return img_state,None def clear_everything(img_state): img_state.clear() return img_state, None, None, gr.Textbox(value='',lines=1, placeholder=class_names_coco_ade20k, label='Class Names') def clean_prompts(img_state): img_state.clean() return img_state, Image.fromarray(img_state.img), None # 初始化配置和模型 model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" sam_path = './sam2.1_hiera_large.pt' adapter_pth = './model_0279999_with_sem_new.pth' cfg = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml' initialize_models(sam_path, adapter_pth, model_cfg, cfg) # Examples for testing examples = [ ['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'], ['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'], ['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'], ] examples_point = [ ['./demo/images/ADE_val_00000739.jpg'], ['./demo/images/000000052462.jpg'], ['./demo/images/000000081766.jpg'], ['./demo/images/ADE_val_00000001.jpg'], ['./demo/images/000000033707.jpg'], ['./demo/images/ADE_val_00000572.jpg'] ] output_labels = ['segmentation map'] title = '

Mask-Adapter + Segment Anything-2

' description = """ Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.
arXiv Paper GitHub Code
""" with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Tabs(): with gr.TabItem("Automatic Mode"): with gr.Row(): with gr.Column(): input_image = gr.Image(type='filepath', label="Input Image") class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names') with gr.Column(): output_image = gr.Image(type="pil", label='Segmentation Map') # Buttons below segmentation map (now placed under segmentation map) run_button = gr.Button("Run Automatic Segmentation", elem_id="run_button",variant='primary') run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image) clear_button = gr.Button("Clear") clear_button.click(lambda: None, inputs=None, outputs=output_image) with gr.Row(): gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image) with gr.TabItem("Box Mode"): img_state_bbox = gr.State(value=IMGState()) with gr.Row(): # 水平排列 with gr.Column(scale=1): input_image = gr.Image( label="Input Image", type="pil") class_names_input_box = gr.Textbox(lines=1, placeholder=class_names_coco_ade20k, label='Class Names') with gr.Column(scale=1): output_image_box = gr.Image(type="pil", label='Segmentation Map',interactive=False) # 输出分割图 clear_prompt_button_box = gr.Button("Clean Prompt") clear_button_box = gr.Button("Restart") gr.Markdown("Click the top-left and bottom-right corners of the image to select a rectangular area") input_image.select( get_bbox_with_draw, [input_image, img_state_bbox], outputs=[img_state_bbox, input_image] ).then( check_and_infer_box, inputs=[input_image, img_state_bbox,class_names_input_box], outputs=[output_image_box] ) clear_prompt_button_box.click( clean_prompts, inputs=[img_state_bbox], outputs=[img_state_bbox, input_image, output_image_box] ) clear_button_box.click( clear_everything, inputs=[img_state_bbox], outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box] ) input_image.clear( clear_everything, inputs=[img_state_bbox], outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box] ) output_image_box.clear( clear_everything, inputs=[img_state_bbox], outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box] ) gr.Examples( examples=examples_point, inputs=[input_image, img_state_bbox], outputs=[img_state_bbox, output_image_box], examples_per_page=6, fn=preprocess_example, run_on_click=True, cache_examples=False, ) with gr.TabItem("Point Mode"): img_state_points = gr.State(value=IMGState()) with gr.Row(): # 水平排列 with gr.Column(scale=1): input_image = gr.Image( label="Input Image", type="pil") class_names_input_point = gr.Textbox(lines=1, placeholder=class_names_coco_ade20k, label='Class Names') with gr.Column(scale=1): output_image_point = gr.Image(type="pil", label='Segmentation Map',interactive=False) # 输出分割图 clear_prompt_button_point = gr.Button("Clean Prompt") clear_button_point = gr.Button("Restart") input_image.select( get_points_with_draw, [input_image, img_state_points], outputs=[img_state_points, input_image] ).then( inference_point, inputs=[input_image, img_state_points,class_names_input_point], outputs=[output_image_point] ) clear_prompt_button_point.click( clean_prompts, inputs=[img_state_points], outputs=[img_state_points, input_image, output_image_point] ) clear_button_point.click( clear_everything, inputs=[img_state_points], outputs=[img_state_points, input_image, output_image_point,class_names_input_point] ) input_image.clear( clear_everything, inputs=[img_state_points], outputs=[img_state_points, input_image, output_image_point,class_names_input_point] ) output_image_point.clear( clear_everything, inputs=[img_state_points], outputs=[img_state_points, input_image, output_image_point,class_names_input_point] ) gr.Examples( examples=examples_point, inputs=[input_image, img_state_points], outputs=[img_state_points, output_image_point], examples_per_page=6, fn=preprocess_example, run_on_click=True, cache_examples=False, ) # Example images below buttons demo.launch()