Spaces:
Runtime error
Runtime error
File size: 12,223 Bytes
f5fdf51 367ad6d f5fdf51 367ad6d 0ae5e99 72cbce3 367ad6d f5fdf51 47db2fb 367ad6d 72cbce3 367ad6d f5fdf51 367ad6d f5fdf51 dab917a f5fdf51 47db2fb f5fdf51 72cbce3 11625cd 72cbce3 f5fdf51 36178b5 f5fdf51 47db2fb f5fdf51 9ef927d a403dcf f5fdf51 9ef927d f5fdf51 0b967bf f5fdf51 367ad6d f5fdf51 72cbce3 367ad6d f5fdf51 dab917a 367ad6d f5fdf51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Copyright (c) Tencent Inc. All rights reserved.
import time
import os
os.environ['PYTORCH_JIT'] = "0"
os.system('mim install mmcv==2.0.1')
os.system('pip install numpy==1.26.4')
# import spaces
import sys
import argparse
import os.path as osp
from io import BytesIO
from functools import partial
# import spaces
# from mmengine.runner import Runner
from mmengine.dataset import Compose
from mmengine.runner.amp import autocast
from mmengine.config import Config, DictAction, ConfigDict
from mmdet.datasets import CocoDataset
from mmyolo.registry import RUNNERS
import cv2
# import onnx
import torch
# import onnxsim
import numpy as np
import gradio as gr
from PIL import Image
import supervision as sv
from torchvision.ops import nms
from transformers import (AutoTokenizer, CLIPTextModelWithProjection)
from transformers import (AutoProcessor, CLIPImageProcessor, CLIPVisionModelWithProjection)
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=2)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
# @spaces.GPU
def generate_image_embeddings(prompt_image,
vision_encoder,
vision_processor,
projector,
device='cuda:0'):
prompt_image = prompt_image.convert('RGB')
inputs = vision_processor(images=[prompt_image],
return_tensors="pt",
padding=False)
inputs = inputs.to(device)
image_outputs = vision_encoder(**inputs)
img_feats = image_outputs.image_embeds.view(1, -1)
img_feats = img_feats / img_feats.norm(p=2, dim=-1, keepdim=True)
if projector is not None:
img_feats = projector(img_feats) + img_feats
return img_feats
# @spaces.GPU
def run_image(runner,
vision_encoder,
vision_processor,
padding_token,
image,
text,
prompt_image,
add_padding,
max_num_boxes,
score_thr,
nms_thr,
image_path='./work_dirs/demo.png'):
image = image.convert('RGB')
if prompt_image is not None:
texts = [['object'], [' ']]
projector = None
if hasattr(runner.model, 'image_prompt_encoder'):
projector = runner.model.image_prompt_encoder.projector
print(projector)
prompt_embeddings = generate_image_embeddings(
prompt_image,
vision_encoder=vision_encoder,
vision_processor=vision_processor,
projector=projector)
if add_padding == 'padding':
prompt_embeddings = torch.cat([prompt_embeddings, padding_token],
dim=0)
prompt_embeddings = prompt_embeddings / prompt_embeddings.norm(
p=2, dim=-1, keepdim=True)
runner.model.num_test_classes = prompt_embeddings.shape[0]
runner.model.setembeddings(prompt_embeddings[None])
else:
runner.model.setembeddings(None)
texts = [[t.strip()] for t in text.split(',')]
data_info = dict(img_id=0, img=np.array(image), texts=texts)
data_info = runner.pipeline(data_info)
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
data_samples=[data_info['data_samples']])
with autocast(enabled=False), torch.no_grad():
if (prompt_image is not None) and ('texts' in data_batch['data_samples'][
0]):
del data_batch['data_samples'][0]['texts']
output = runner.model.test_step(data_batch)[0]
pred_instances = output.pred_instances
keep = nms(pred_instances.bboxes,
pred_instances.scores,
iou_threshold=nms_thr)
pred_instances = pred_instances[keep]
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
if len(pred_instances.scores) > max_num_boxes:
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
pred_instances = pred_instances[indices]
pred_instances = pred_instances.cpu().numpy()
if 'masks' in pred_instances:
masks = pred_instances['masks']
else:
masks = None
detections = sv.Detections(xyxy=pred_instances['bboxes'],
class_id=pred_instances['labels'],
confidence=pred_instances['scores'],
mask=masks)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
if masks is not None:
image = MASK_ANNOTATOR.annotate(image, detections)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
image = Image.fromarray(image)
return image
MARKDOWN = """
# YOLO-World-Image 👀: YOLO-World with Image Prompts
Now everyone can use YOLO-World and some image prompts to detect corresponding objects in images, no longer relying on text prompts!
This demo is actively under construction and the YOLO-World-Image is an initial (**beta**) version!
<div style='display:flex; gap: 0.25rem; align-items: center'>
<a href="https://yoloworld.cc"><img src="https://img.shields.io/badge/Project-Page-green"></a>
<a href="https://arxiv.org/abs/2401.17270"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a>
<a href="https://github.com/AILab-CVC/YOLO-World"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a>
<a href="https://huggingface.co/spaces/stevengrove/YOLO-World"><img src="https://img.shields.io/badge/🤗HugginngFace-Spaces-orange"></a>
</div>
### Simple guide:
* upload the image prompts
* adjust the hyperparameters:
- score threshold
- nms threshold
- max number of detections
- whether using padding: adding padding might improve the confidence scores of the predictions. It will be removed in the coming updates.
* run with 'submit'!
"""
def demo(runner, vision_encoder, vision_processor, padding_embed):
with gr.Blocks(title="YOLO-World") as demo:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
image = gr.Image(type='pil', label='input image')
output_image = gr.Image(type='pil', label='output image')
with gr.Row():
with gr.Column(scale=0.3):
with gr.Row():
prompt_image = gr.Image(type='pil',
label='Image Prompts',
height=300)
with gr.Row():
add_padding = gr.Radio(["padding", "none"],
label="Padding Prompt",
info="whether add padding prompt")
with gr.Column(scale=0.3):
with gr.Row():
input_text = gr.Textbox(
lines=7,
label='Text Prompts:\nEnter the classes to be detected, '
'separated by comma',
value=', '.join(CocoDataset.METAINFO['classes']),
elem_id='textbox')
with gr.Column(scale=0.4):
max_num_boxes = gr.Slider(minimum=1,
maximum=300,
value=100,
step=1,
interactive=True,
label='Maximum Number Boxes')
score_thr = gr.Slider(minimum=0,
maximum=1,
value=0.05,
step=0.001,
interactive=True,
label='Score Threshold')
nms_thr = gr.Slider(minimum=0,
maximum=1,
value=0.7,
step=0.001,
interactive=True,
label='NMS Threshold')
with gr.Row():
submit = gr.Button('Submit')
clear = gr.Button('Clear')
exp_image_dir = "./gradio_examples/image_prompts/images/"
exp_prompt_dir = "./gradio_examples/image_prompts/prompts/"
example = gr.Examples(
examples=[
[
exp_image_dir + "0.jpeg", exp_prompt_dir + "0.png", "",
"none", 0.3, 0.5, 100
],
[
exp_image_dir + "1.png", exp_prompt_dir + "1.png", "",
"padding", 0.2, 0.1, 100
],
[
exp_image_dir + "3.png", exp_prompt_dir + "3.png", "",
"padding", 0.3, 0.5, 100
],
],
inputs=[
image, prompt_image, input_text, add_padding, score_thr,
nms_thr, max_num_boxes
],
)
submit.click(
partial(run_image, runner, vision_encoder, vision_processor,
padding_embed), [
image,
input_text,
prompt_image,
add_padding,
max_num_boxes,
score_thr,
nms_thr,
], [output_image])
clear.click(lambda: [None, None, '', None], None,
[image, prompt_image, input_text, output_image])
demo.launch() # port 80 does not work for me
if __name__ == '__main__':
# args = parse_args()
config = "configs/prompt_tuning_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_image_prompt_demo.py"
checkpoint = "weights/yolo_world_v2_l_image_prompt_adapter-719a7afb.pth"
# load config
cfg = Config.fromfile(config)
cfg.compile = False
if cfg.get('work_dir', None) is None:
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(config))[0])
cfg.load_from = checkpoint
# if 'runner_type' not in cfg:
# runner = Runner.from_cfg(cfg)
# else:
#
runner = RUNNERS.build(cfg)
# runner.test()
runner.call_hook('before_run')
runner.load_or_resume()
pipeline = cfg.test_dataloader.dataset.pipeline
pipeline[0].type = 'mmdet.LoadImageFromNDArray'
runner.pipeline = Compose(pipeline)
runner.model.eval()
# init vision encoder
clip_model = "openai/clip-vit-base-patch32"
vision_model = CLIPVisionModelWithProjection.from_pretrained(clip_model)
processor = CLIPImageProcessor.from_pretrained(clip_model)
device = 'cuda'
vision_model.to(device)
texts = [' ']
tokenizer = AutoTokenizer.from_pretrained(clip_model)
text_model = CLIPTextModelWithProjection.from_pretrained(clip_model)
# device = 'cuda:0'
text_model.to(device)
texts = tokenizer(text=texts, return_tensors='pt', padding=True)
texts = texts.to(device)
text_outputs = text_model(**texts)
txt_feats = text_outputs.text_embeds
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
txt_feats = txt_feats.reshape(-1, txt_feats.shape[-1])
txt_feats = txt_feats[0].unsqueeze(0)
demo(runner, vision_model, processor, txt_feats)
|