File size: 8,744 Bytes
f5fdf51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import Tensor
from torchvision.ops import batched_nms

_XYWH2XYXY = torch.tensor([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0],
                           [-0.5, 0.0, 0.5, 0.0], [0.0, -0.5, 0.0, 0.5]],
                          dtype=torch.float32)


def sort_nms_index(nms_index, scores, batch_size, keep_top_k=-1):
    """
    first sort the nms_index by batch, and then sort by score in every image result, final apply keep_top_k strategy. In the process, we can also get the number of detections for each image: num_dets
    """
    # first sort by batch index to make sure that the same batch index is together
    device = nms_index.device
    nms_index_indices = torch.argsort(nms_index[:, 0], dim=0).to(device)
    nms_index = nms_index[nms_index_indices]

    scores = scores[nms_index[:, 0], nms_index[:, 1], nms_index[:, 2]]
    batch_inds = nms_index[:, 0]

    # Get the number of detections for each image
    num_dets = torch.bincount(batch_inds,minlength=batch_size).to(device)
    # Calculate the sum from front to back
    cumulative_sum = torch.cumsum(num_dets, dim=0).to(device)
    # add initial value 0
    cumulative_sum = torch.cat((torch.tensor([0]).to(device), cumulative_sum))
    for i in range(len(num_dets)):
        start = cumulative_sum[i]
        end = cumulative_sum[i + 1]
        # sort by score in every batch
        block_idx = torch.argsort(scores[start:end], descending=True).to(device)
        nms_index[start:end] = nms_index[start:end][block_idx]
        if keep_top_k > 0 and end - start > keep_top_k:
            # delete lines from start+keep_top_k to end to keep only top k
            nms_index = torch.cat(
                (nms_index[: start + keep_top_k], nms_index[end:]), dim=0
            )
            num_dets[i] -= end - start - keep_top_k
            cumulative_sum -= end - start - keep_top_k
    return nms_index, num_dets


def select_nms_index(
    scores: Tensor,
    boxes: Tensor,
    nms_index: Tensor,
    batch_size: int,
    keep_top_k: int = -1,
):
    if nms_index.numel() == 0:
        return torch.empty(0), torch.empty(0, 4), torch.empty(0), torch.empty(0)
    nms_index, num_dets = sort_nms_index(nms_index, scores, batch_size, keep_top_k)
    batch_inds, cls_inds = nms_index[:, 0], nms_index[:, 1]
    box_inds = nms_index[:, 2]

    # according to the nms_index to get the scores,boxes and labels
    batched_scores = scores[batch_inds, cls_inds, box_inds]
    batched_dets = boxes[batch_inds, box_inds, ...]
    batched_labels = cls_inds

    return num_dets, batched_dets, batched_scores, batched_labels


def construct_indice(batch_idx, select_bbox_idxs, class_idxs, original_idxs):
    num_bbox = len(select_bbox_idxs)
    class_idxs = class_idxs[select_bbox_idxs]
    indice = torch.zeros((num_bbox, 3), dtype=torch.int32).to(select_bbox_idxs.device)
    # batch_idx
    indice[:, 0] = batch_idx
    # class_idxs
    indice[:, 1] = class_idxs
    # select_bbox_idxs
    indice[:, 2] = original_idxs[select_bbox_idxs]
    return indice


def filter_max_boxes_per_class(
    select_bbox_idxs, class_idxs, max_output_boxes_per_class
):
    class_counts = {}  #  used to track the count of each class

    filtered_select_bbox_idxs = []
    filtered_max_class_idxs = []

    for bbox_idx, class_idx in zip(select_bbox_idxs, class_idxs):
        class_count = class_counts.get(
            class_idx.item(), 0
        )  #  Get the count of the current class, or return 0 if it does not exist
        if class_count < max_output_boxes_per_class:
            filtered_select_bbox_idxs.append(bbox_idx)
            filtered_max_class_idxs.append(class_idx)
            class_counts[class_idx.item()] = class_count + 1
    return torch.tensor(filtered_select_bbox_idxs), torch.tensor(
        filtered_max_class_idxs
    )


class ONNXNMSop(torch.autograd.Function):

    @staticmethod
    def forward(
        ctx,
        boxes: Tensor,
        scores: Tensor,
        max_output_boxes_per_class: Tensor = torch.tensor([100]),
        iou_threshold: Tensor = torch.tensor([0.5]),
        score_threshold: Tensor = torch.tensor([0.05])
    ) -> Tensor:
        """
        Non-Maximum Suppression (NMS) implementation.

        Args:
            boxes (Tensor): Bounding boxes of shape (batch_size, num_boxes, 4).
            scores (Tensor): Confidence scores of shape (batch_size, num_classes, num_boxes).
            max_output_boxes_per_class (Tensor): Maximum number of output boxes per class.
            iou_threshold (Tensor): IoU threshold for NMS.
            score_threshold (Tensor): Confidence score threshold.

        Returns:
            Tensor: Selected indices of shape (num_det, 3).first value is batch index, second value is class index, third value is box index
        """
        device = boxes.device
        batch_size, num_classes, num_boxes = scores.shape
        selected_indices = []
        for batch_idx in range(batch_size):
            boxes_per_image = boxes[batch_idx]
            scores_per_image = scores[batch_idx]

            # If no boxes in this image, continue to the next image
            if boxes_per_image.numel() == 0:
                continue

            # for one box, only exist one class,so use torch.max to get the max score and class index
            scores_per_image, class_idxs = torch.max(scores_per_image, dim=0)
            # Apply score threshold before batched_nms bacause nms operation is time expensive
            keep_idxs = scores_per_image > score_threshold
            if not torch.any(keep_idxs):
                # If no boxes left after applying score threshold, continue to the next image
                continue

            boxes_per_image = boxes_per_image[keep_idxs]
            scores_per_image = scores_per_image[keep_idxs]
            class_idxs = class_idxs[keep_idxs]

            #  The purpose of original_idxs is we want to return the indexs to the original input data instead of the filtered.
            original_idxs = torch.arange(num_boxes, device=device)[keep_idxs]
            # reference: https://pytorch.org/vision/main/generated/torchvision.ops.batched_nms.html
            select_bbox_idxs = batched_nms(
                boxes_per_image, scores_per_image, class_idxs, iou_threshold
            )
            if (
                select_bbox_idxs.shape[0] > max_output_boxes_per_class
            ):  # If the boxes detected by all classes together are less than max_output_boxes_per_class, then there is no need to filter
                select_bbox_idxs, _ = filter_max_boxes_per_class(
                    select_bbox_idxs,
                    class_idxs[select_bbox_idxs],
                    max_output_boxes_per_class,
                )
            selected_indice = construct_indice(
                batch_idx, select_bbox_idxs, class_idxs, original_idxs
            )
            selected_indices.append(selected_indice)
        if len(selected_indices) == 0:
            return torch.tensor([], device=device)
        selected_indices = torch.cat(selected_indices, dim=0)
        return selected_indices

    @staticmethod
    def symbolic(
            g,
            boxes: Tensor,
            scores: Tensor,
            max_output_boxes_per_class: Tensor = torch.tensor([100]),
            iou_threshold: Tensor = torch.tensor([0.5]),
            score_threshold: Tensor = torch.tensor([0.05]),
    ):
        return g.op(
            'NonMaxSuppression',
            boxes,
            scores,
            max_output_boxes_per_class,
            iou_threshold,
            score_threshold,
            outputs=1)


def onnx_nms(
    boxes: torch.Tensor,
    scores: torch.Tensor,
    max_output_boxes_per_class: int = 100,
    iou_threshold: float = 0.5,
    score_threshold: float = 0.05,
    pre_top_k: int = -1,
    keep_top_k: int = 100,
    box_coding: int = 0,
):
    max_output_boxes_per_class = torch.tensor([max_output_boxes_per_class])
    iou_threshold = torch.tensor([iou_threshold]).to(boxes.device)
    score_threshold = torch.tensor([score_threshold]).to(boxes.device)

    batch_size, _, _ = scores.shape
    if box_coding == 1:
        boxes = boxes @ (_XYWH2XYXY.to(boxes.device))
    scores = scores.transpose(1, 2).contiguous()
    selected_indices = ONNXNMSop.apply(boxes, scores,
                                       max_output_boxes_per_class,
                                       iou_threshold, score_threshold)

    num_dets, batched_dets, batched_scores, batched_labels = select_nms_index(
        scores, boxes, selected_indices, batch_size, keep_top_k=keep_top_k)

    return num_dets, batched_dets, batched_scores, batched_labels.to(
        torch.int32)