Spaces:
Runtime error
Runtime error
File size: 8,344 Bytes
f5fdf51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import json
import argparse
import os.path as osp
import cv2
import tqdm
import torch
import numpy as np
import tensorflow as tf
import supervision as sv
from torchvision.ops import nms
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=1)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
def parse_args():
parser = argparse.ArgumentParser('YOLO-World TFLite (INT8) Demo')
parser.add_argument('path', help='TFLite Model `.tflite`')
parser.add_argument('image', help='image path, include image file or dir.')
parser.add_argument(
'text',
help=
'detecting texts (str, txt, or json), should be consistent with the ONNX model'
)
parser.add_argument('--output-dir',
default='./output',
help='directory to save output files')
args = parser.parse_args()
return args
def preprocess(image, size=(640, 640)):
h, w = image.shape[:2]
max_size = max(h, w)
scale_factor = size[0] / max_size
pad_h = (max_size - h) // 2
pad_w = (max_size - w) // 2
pad_image = np.zeros((max_size, max_size, 3), dtype=image.dtype)
pad_image[pad_h:h + pad_h, pad_w:w + pad_w] = image
image = cv2.resize(pad_image, size,
interpolation=cv2.INTER_LINEAR).astype('float32')
image /= 255.0
image = image[None]
return image, scale_factor, (pad_h, pad_w)
def generate_anchors_per_level(feat_size, stride, offset=0.5):
h, w = feat_size
shift_x = (torch.arange(0, w) + offset) * stride
shift_y = (torch.arange(0, h) + offset) * stride
yy, xx = torch.meshgrid(shift_y, shift_x)
anchors = torch.stack([xx, yy]).reshape(2, -1).transpose(0, 1)
return anchors
def generate_anchors(feat_sizes=[(80, 80), (40, 40), (20, 20)],
strides=[8, 16, 32],
offset=0.5):
anchors = [
generate_anchors_per_level(fs, s, offset)
for fs, s in zip(feat_sizes, strides)
]
anchors = torch.cat(anchors)
return anchors
def simple_bbox_decode(points, pred_bboxes, stride):
pred_bboxes = pred_bboxes * stride[None, :, None]
x1 = points[..., 0] - pred_bboxes[..., 0]
y1 = points[..., 1] - pred_bboxes[..., 1]
x2 = points[..., 0] + pred_bboxes[..., 2]
y2 = points[..., 1] + pred_bboxes[..., 3]
bboxes = torch.stack([x1, y1, x2, y2], -1)
return bboxes
def visualize(image, bboxes, labels, scores, texts):
detections = sv.Detections(xyxy=bboxes, class_id=labels, confidence=scores)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
return image
def inference_per_sample(interp,
image_path,
texts,
priors,
strides,
output_dir,
size=(640, 640),
vis=False,
score_thr=0.05,
nms_thr=0.3,
max_dets=300):
# input / output details from TFLite
input_details = interp.get_input_details()
output_details = interp.get_output_details()
# load image from path
ori_image = cv2.imread(image_path)
h, w = ori_image.shape[:2]
image, scale_factor, pad_param = preprocess(ori_image[:, :, [2, 1, 0]],
size)
# inference
interp.set_tensor(input_details[0]['index'], image)
interp.invoke()
scores = interp.get_tensor(output_details[1]['index'])
bboxes = interp.get_tensor(output_details[0]['index'])
# can be converted to numpy for other devices
# using torch here is only for references.
ori_scores = torch.from_numpy(scores[0])
ori_bboxes = torch.from_numpy(bboxes)
# decode bbox cordinates with priors
decoded_bboxes = simple_bbox_decode(priors, ori_bboxes, strides)[0]
scores_list = []
labels_list = []
bboxes_list = []
for cls_id in range(len(texts)):
cls_scores = ori_scores[:, cls_id]
labels = torch.ones(cls_scores.shape[0], dtype=torch.long) * cls_id
keep_idxs = nms(decoded_bboxes, cls_scores, iou_threshold=0.5)
cur_bboxes = decoded_bboxes[keep_idxs]
cls_scores = cls_scores[keep_idxs]
labels = labels[keep_idxs]
scores_list.append(cls_scores)
labels_list.append(labels)
bboxes_list.append(cur_bboxes)
scores = torch.cat(scores_list, dim=0)
labels = torch.cat(labels_list, dim=0)
bboxes = torch.cat(bboxes_list, dim=0)
keep_idxs = scores > score_thr
scores = scores[keep_idxs]
labels = labels[keep_idxs]
bboxes = bboxes[keep_idxs]
# only for visualization, add an extra NMS
keep_idxs = nms(bboxes, scores, iou_threshold=nms_thr)
num_dets = min(len(keep_idxs), max_dets)
bboxes = bboxes[keep_idxs].unsqueeze(0)
scores = scores[keep_idxs].unsqueeze(0)
labels = labels[keep_idxs].unsqueeze(0)
scores = scores[0, :num_dets].numpy()
bboxes = bboxes[0, :num_dets].numpy()
labels = labels[0, :num_dets].numpy()
bboxes -= np.array(
[pad_param[1], pad_param[0], pad_param[1], pad_param[0]])
bboxes /= scale_factor
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, w)
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, h)
if vis:
image_out = visualize(ori_image, bboxes, labels, scores, texts)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image_out)
print(f"detecting {num_dets} objects.")
return image_out, ori_scores, ori_bboxes[0]
else:
return bboxes, labels, scores
def main():
args = parse_args()
tflite_file = args.tflite
# init ONNX session
interpreter = tf.lite.Interpreter(model_path=tflite_file,
experimental_preserve_all_tensors=True)
interpreter.allocate_tensors()
print("Init TFLite Interpter")
output_dir = "onnx_outputs"
if not osp.exists(output_dir):
os.mkdir(output_dir)
# load images
if not osp.isfile(args.image):
images = [
osp.join(args.image, img) for img in os.listdir(args.image)
if img.endswith('.png') or img.endswith('.jpg')
]
else:
images = [args.image]
if args.text.endswith('.txt'):
with open(args.text) as f:
lines = f.readlines()
texts = [[t.rstrip('\r\n')] for t in lines]
elif args.text.endswith('.json'):
texts = json.load(open(args.text))
else:
texts = [[t.strip()] for t in args.text.split(',')]
size = (640, 640)
strides = [8, 16, 32]
# prepare anchors, since TFLite models does not contain anchors, due to INT8 quantization.
featmap_sizes = [(size[0] // s, size[1] // s) for s in strides]
flatten_priors = generate_anchors(featmap_sizes, strides=strides)
mlvl_strides = [
flatten_priors.new_full((featmap_size[0] * featmap_size[1] * 1, ),
stride)
for featmap_size, stride in zip(featmap_sizes, strides)
]
flatten_strides = torch.cat(mlvl_strides)
print("Start to inference.")
for img in tqdm.tqdm(images):
inference_per_sample(interpreter,
img,
texts,
flatten_priors[None],
flatten_strides,
output_dir=output_dir,
vis=True,
score_thr=0.3,
nms_thr=0.5)
print("Finish inference")
if __name__ == "__main__":
main()
|