Spaces:
Runtime error
Runtime error
# Copyright (c) Tencent Inc. All rights reserved. | |
# This file is modifef from mmyolo/demo/video_demo.py | |
import argparse | |
import cv2 | |
import mmcv | |
import torch | |
from mmengine.dataset import Compose | |
from mmdet.apis import init_detector | |
from mmengine.utils import track_iter_progress | |
from mmyolo.registry import VISUALIZERS | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='YOLO-World video demo') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument('video', help='video file path') | |
parser.add_argument( | |
'text', | |
help= | |
'text prompts, including categories separated by a comma or a txt file with each line as a prompt.' | |
) | |
parser.add_argument('--device', | |
default='cuda:0', | |
help='device used for inference') | |
parser.add_argument('--score-thr', | |
default=0.1, | |
type=float, | |
help='confidence score threshold for predictions.') | |
parser.add_argument('--out', type=str, help='output video file') | |
args = parser.parse_args() | |
return args | |
def inference_detector(model, image, texts, test_pipeline, score_thr=0.3): | |
data_info = dict(img_id=0, img=image, texts=texts) | |
data_info = test_pipeline(data_info) | |
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0), | |
data_samples=[data_info['data_samples']]) | |
with torch.no_grad(): | |
output = model.test_step(data_batch)[0] | |
pred_instances = output.pred_instances | |
pred_instances = pred_instances[pred_instances.scores.float() > | |
score_thr] | |
output.pred_instances = pred_instances | |
return output | |
def main(): | |
args = parse_args() | |
model = init_detector(args.config, args.checkpoint, device=args.device) | |
# build test pipeline | |
model.cfg.test_dataloader.dataset.pipeline[ | |
0].type = 'mmdet.LoadImageFromNDArray' | |
test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) | |
if args.text.endswith('.txt'): | |
with open(args.text) as f: | |
lines = f.readlines() | |
texts = [[t.rstrip('\r\n')] for t in lines] + [[' ']] | |
else: | |
texts = [[t.strip()] for t in args.text.split(',')] + [[' ']] | |
# reparameterize texts | |
model.reparameterize(texts) | |
# init visualizer | |
visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
# the dataset_meta is loaded from the checkpoint and | |
# then pass to the model in init_detector | |
visualizer.dataset_meta = model.dataset_meta | |
video_reader = mmcv.VideoReader(args.video) | |
video_writer = None | |
if args.out: | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
video_writer = cv2.VideoWriter( | |
args.out, fourcc, video_reader.fps, | |
(video_reader.width, video_reader.height)) | |
for frame in track_iter_progress(video_reader): | |
result = inference_detector(model, | |
frame, | |
texts, | |
test_pipeline, | |
score_thr=args.score_thr) | |
visualizer.add_datasample(name='video', | |
image=frame, | |
data_sample=result, | |
draw_gt=False, | |
show=False, | |
pred_score_thr=args.score_thr) | |
frame = visualizer.get_image() | |
if args.out: | |
video_writer.write(frame) | |
if video_writer: | |
video_writer.release() | |
if __name__ == '__main__': | |
main() | |