## Run YOLO-World (Quantized) on TF-Lite - [x] Export YOLO-World to TFLite with INT8 Quantization. - [x] TFLite demo ### Priliminaries ```bash pip install onnxruntime onnx onnx-simplifier pip install tensorflow==2.15.1 ``` See [onnx2tf](https://github.com/PINTO0309/onnx2tf) for more details about export TFLite models. The contributor of `onnx2tf` is very nice! ### Export TFLite INT8 Quantization models Please use **Reparameterized YOLO-World** for TFLite!! 1. Prepare the ONNX model Please export the ONNX model without `postprocessing` and `bbox_decoder`, just add `--without-bbox-decoder`! `bbox_decoder` is not supported for INT8 quantization, please take care! ```bash PYTHONPATH=./ python deploy/export_onnx.py path/to/config path/to/weights --custom-text path/to/customtexts --opset 11 --without-bbox-decoder ``` 2. Generate the calibration samples Using 100 COCO images is suggested to create a simple calibration dataset for quantization. ```python import os import random from PIL import Image, ImageOps import cv2 import glob import numpy as np root = "data/coco/val2017/" image_list = os.listdir(root) image_list = [os.path.join(root, f) for f in image_list] random.shuffle(image_list) img_datas = [] for idx, file in enumerate(image_list[:100]): image = Image.open(file).convert('RGB') # Get sample input data as a numpy array in a method of your choosing. img_width, img_height = image.size size = max(img_width, img_height) image = ImageOps.pad(image, (size, size), method=Image.BILINEAR) image = image.resize((640, 640), Image.BILINEAR) tensor_image = np.asarray(image).astype(np.float32) tensor_image /= 255.0 tensor_image = np.expand_dims(tensor_image, axis=0) img_datas.append(tensor_image) calib_datas = np.vstack(img_datas) print(f'calib_datas.shape: {calib_datas.shape}') np.save(file='tflite_calibration_data_100_images_640.npy', arr=calib_datas) ``` 3. Export ONNX to TFLite using `onnx2tf` ```bash onnx2tf -i [ONNX] -o [OUTPUT] -oiqt -cind "images" "tflite_calibration_data_100_images_640.npy" "[[[[0.,0.,0.]]]]" "[[[[1.,1.,1.]]]]" -onimc "scores" "bboxes" --verbosity debug ``` We provide a sample TFLite INT8 model: [yolo_world_x_coco_zeroshot_rep_integer_quant.tflite](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_x_coco_zeroshot_rep_integer_quant.tflite) ### Inference using TFLite ```bash python deploy/tflite_demo.py path/to/tflite path/to/images path/to/texts ```