File size: 5,679 Bytes
e491046
 
 
 
04dcf7d
 
 
e491046
04dcf7d
e491046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a76a56
e491046
 
 
 
 
 
 
 
 
 
 
 
 
95f4eea
e491046
 
4a76a56
04dcf7d
 
 
 
 
 
 
 
e491046
 
 
 
 
 
 
 
c6bdca0
e491046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bdca0
4a76a56
c6bdca0
56ba843
e491046
 
 
 
c6bdca0
0807974
c6bdca0
e491046
 
c6bdca0
e491046
 
 
 
 
 
0807974
e491046
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js
import re
import os 
#hf_token = os.environ.get('HF_TOKEN')
import openai
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
from gradio_client import Client
#client = Client("https://fffiloni-test-llama-api-debug.hf.space/", hf_token=hf_token)
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")

def get_text_after_colon(input_text):
    # Find the first occurrence of ":"
    colon_index = input_text.find(":")
    
    # Check if ":" exists in the input_text
    if colon_index != -1:
        # Extract the text after the colon
        result_text = input_text[colon_index + 1:].strip()
        return result_text
    else:
        # Return the original text if ":" is not found
        return input_text

def infer(image_input, audience):
    gr.Info('Calling CLIP Interrogator, ์ด๋ฏธ์ง€๋ฅผ ํ•ด์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...')
    clipi_result = clipi_client.predict(
    				image_input,	# str (filepath or URL to image) in 'parameter_3' Image component
    				"best",	# str in 'Select mode' Radio component
    				4,	# int | float (numeric value between 2 and 24) in 'best mode max flavors' Slider component
    				api_name="/clipi2"
    )
    print(clipi_result)
   

    llama_q = f"""
    I'll give you a simple image caption, please provide a fictional story for a {audience} audience that would fit well with the image. Please be creative, do not worry and only generate a cool fictional story. 
    Here's the image description: 
    '{clipi_result[0]}'
    ํ•œ๊ตญ์–ด๋กœ ๋‹ต๋ณ€ํ•ด์ค˜.
    
    """
    gr.Info('Calling ChatGPT, ์ด์•ผ๊ธฐ๋ฅผ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...')
    #result = client.predict(
    #				llama_q,	# str in 'Message' Textbox component
    #                "I2S",
    #				api_name="/predict"
    #)
    chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": llama_q}])
    result = chat_completion.choices[0].message.content
    
    print(f"Llama2 result: {result}")

    result = get_text_after_colon(result)

    # Split the text into paragraphs based on actual line breaks
    paragraphs = result.split('\n')
    
    # Join the paragraphs back with an extra empty line between each paragraph
    formatted_text = '\n'.join(paragraphs)


    return formatted_text, gr.Group.update(visible=True)

css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 13rem;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center">Image to Story - Korean</h1>
            <p style="text-align: center">์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜์„ธ์š”, ChatGPT๋ฅผ ํ†ตํ•ด ํ•œ๊ตญ์–ด๋กœ ์ด์•ผ๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด ์ค๋‹ˆ๋‹ค!</p>
            <p style="text-align: center">์›๋ณธ https://huggingface.co/spaces/fffiloni/Image-to-Story ์—์„œ ํ•œ๊ตญ์–ด๋กœ ๊ธ€์„ ์ƒ์„ฑํ•˜๊ฒŒ ํ•˜๊ณ , Llama ๋ฅผ ChatGPT ๋กœ ์ˆ˜์ •ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.</p>
            <p style="text-align: center">ChatGPT ์‘๋‹ต์ด ์˜ค๋ž˜ ์ง€์—ฐ๋˜๊ฑฐ๋‚˜ ์‚ฌ์šฉ์ œํ•œ์œผ๋กœ ์•ˆ๋  ๋•Œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(label="์ด๋ฏธ์ง€ ์ž…๋ ฅ", type="filepath", elem_id="image-in", height=420)
                audience = gr.Radio(label="๋Œ€์ƒ", choices=["Children", "Adult"], value="Children")
                submit_btn = gr.Button('๊ธ€์„ ๋งŒ๋“ค์–ด ์ฃผ์„ธ์š”')
            with gr.Column():
                #caption = gr.Textbox(label="Generated Caption")
                story = gr.Textbox(label="์ƒ์„ฑ๋œ ์Šคํ† ๋ฆฌ", elem_id="story")

                with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")
        
        gr.Examples(examples=[["./examples/crabby.png", "Children"],["./examples/hopper.jpeg", "Adult"]],
                    fn=infer,
                    inputs=[image_in, audience],
                    outputs=[story, share_group],
                    cache_examples=True
                   )
        
    submit_btn.click(fn=infer, inputs=[image_in, audience], outputs=[story, share_group])
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=12).launch()