Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,12 @@ import pandas as pd
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from threading import Timer
|
6 |
from tqdm import tqdm
|
|
|
7 |
|
8 |
-
HUGGINGFACE_TOKEN =os.environ.get("HUGGINGFACE_TOKEN")
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# print("Loading data from file...")
|
13 |
-
return pd.read_csv("data.csv").to_dict(orient='list')
|
14 |
-
|
15 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
16 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
17 |
models_vision = models_dict['image-text-to-text']
|
@@ -25,7 +23,7 @@ def get_available_free(use_cache = False):
|
|
25 |
"Vision": []
|
26 |
}
|
27 |
|
28 |
-
all_models = list(set(models + models_vision + models_others))
|
29 |
for m in tqdm(all_models):
|
30 |
text_available = False
|
31 |
chat_available = False
|
@@ -41,11 +39,8 @@ def get_available_free(use_cache = False):
|
|
41 |
if e and "Model requires a Pro subscription" in str(e):
|
42 |
pro_sub = True
|
43 |
if e and "Rate limit reached" in str(e):
|
44 |
-
|
45 |
-
|
46 |
-
# print("Loading data from file...")
|
47 |
-
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
48 |
-
return []
|
49 |
try:
|
50 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
51 |
chat_available = True
|
@@ -54,11 +49,8 @@ def get_available_free(use_cache = False):
|
|
54 |
if e and "Model requires a Pro subscription" in str(e):
|
55 |
pro_sub = True
|
56 |
if e and "Rate limit reached" in str(e):
|
57 |
-
|
58 |
-
|
59 |
-
# print("Loading data from file...")
|
60 |
-
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
61 |
-
return []
|
62 |
models_conclusion["Model"].append(m)
|
63 |
models_conclusion["API"].append("Free" if chat_available or text_available else ("Pro Subscription" if pro_sub else "Not Responding"))
|
64 |
models_conclusion["Chat Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("✓" if chat_available else "⌀"))
|
@@ -67,6 +59,14 @@ def get_available_free(use_cache = False):
|
|
67 |
pd.DataFrame(models_conclusion).to_csv(str(os.getcwd())+"/data.csv", index=False)
|
68 |
return models_conclusion
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def update_data(use_cache = False):
|
71 |
data = get_available_free(use_cache)
|
72 |
df = pd.DataFrame(data)
|
@@ -157,11 +157,11 @@ print(response)
|
|
157 |
```
|
158 |
"""
|
159 |
first_run = True
|
|
|
160 |
with gr.Blocks() as demo:
|
161 |
gr.Markdown("## HF Serverless LLM Inference API Status")
|
162 |
gr.Markdown(description)
|
163 |
search_box = gr.Textbox(label="Search for a model", placeholder="Type model name here...")
|
164 |
-
gr.Markdown("### Cached Endpoints")
|
165 |
filter_box = gr.CheckboxGroup(choices=["Free", "Pro Subscription", "Not Responding", "Text Completion", "Chat Completion", "Vision"], label="Filters")
|
166 |
table = gr.Dataframe(value=display_table(use_cache=True), headers="keys")
|
167 |
|
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from threading import Timer
|
6 |
from tqdm import tqdm
|
7 |
+
import time
|
8 |
|
9 |
+
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
10 |
+
|
11 |
+
def loop_query_data():
|
12 |
+
global all_models
|
|
|
|
|
|
|
13 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
14 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
15 |
models_vision = models_dict['image-text-to-text']
|
|
|
23 |
"Vision": []
|
24 |
}
|
25 |
|
26 |
+
all_models = list(set(all_models + models + models_vision + models_others))
|
27 |
for m in tqdm(all_models):
|
28 |
text_available = False
|
29 |
chat_available = False
|
|
|
39 |
if e and "Model requires a Pro subscription" in str(e):
|
40 |
pro_sub = True
|
41 |
if e and "Rate limit reached" in str(e):
|
42 |
+
print("Rate Limited, waiting 1 hour...")
|
43 |
+
time.sleep(60*60)
|
|
|
|
|
|
|
44 |
try:
|
45 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
46 |
chat_available = True
|
|
|
49 |
if e and "Model requires a Pro subscription" in str(e):
|
50 |
pro_sub = True
|
51 |
if e and "Rate limit reached" in str(e):
|
52 |
+
print("Rate Limited, waiting 1 hour...")
|
53 |
+
time.sleep(60*60)
|
|
|
|
|
|
|
54 |
models_conclusion["Model"].append(m)
|
55 |
models_conclusion["API"].append("Free" if chat_available or text_available else ("Pro Subscription" if pro_sub else "Not Responding"))
|
56 |
models_conclusion["Chat Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("✓" if chat_available else "⌀"))
|
|
|
59 |
pd.DataFrame(models_conclusion).to_csv(str(os.getcwd())+"/data.csv", index=False)
|
60 |
return models_conclusion
|
61 |
|
62 |
+
def get_available_free(use_cache = False):
|
63 |
+
if use_cache:
|
64 |
+
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
65 |
+
# print("Loading data from file...")
|
66 |
+
return pd.read_csv("data.csv").to_dict(orient='list')
|
67 |
+
else:
|
68 |
+
return loop_query_data()
|
69 |
+
|
70 |
def update_data(use_cache = False):
|
71 |
data = get_available_free(use_cache)
|
72 |
df = pd.DataFrame(data)
|
|
|
157 |
```
|
158 |
"""
|
159 |
first_run = True
|
160 |
+
all_models = []
|
161 |
with gr.Blocks() as demo:
|
162 |
gr.Markdown("## HF Serverless LLM Inference API Status")
|
163 |
gr.Markdown(description)
|
164 |
search_box = gr.Textbox(label="Search for a model", placeholder="Type model name here...")
|
|
|
165 |
filter_box = gr.CheckboxGroup(choices=["Free", "Pro Subscription", "Not Responding", "Text Completion", "Chat Completion", "Vision"], label="Filters")
|
166 |
table = gr.Dataframe(value=display_table(use_cache=True), headers="keys")
|
167 |
|