Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
|
8 |
def get_available_free(use_cache = False):
|
9 |
if use_cache:
|
10 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
11 |
-
print("Loading data from file...")
|
12 |
return pd.read_csv("data.csv").to_dict(orient='list')
|
13 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
14 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
@@ -22,37 +22,41 @@ def get_available_free(use_cache = False):
|
|
22 |
"Chat Completion": [],
|
23 |
"Vision": []
|
24 |
}
|
25 |
-
|
|
|
|
|
|
|
26 |
text_available = False
|
27 |
chat_available = False
|
28 |
vision_available = False
|
29 |
if m in models_vision:
|
30 |
vision_available = True
|
31 |
pro_sub = False
|
|
|
32 |
try:
|
33 |
InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
|
34 |
text_available = True
|
35 |
except Exception as e:
|
36 |
-
print(e)
|
37 |
if e and "Model requires a Pro subscription" in str(e):
|
38 |
pro_sub = True
|
39 |
if e and "Rate limit reached" in str(e):
|
40 |
-
print("Rate Limited!!")
|
41 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
42 |
-
print("Loading data from file...")
|
43 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
44 |
return []
|
45 |
try:
|
46 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
47 |
chat_available = True
|
48 |
except Exception as e:
|
49 |
-
print(e)
|
50 |
if e and "Model requires a Pro subscription" in str(e):
|
51 |
pro_sub = True
|
52 |
if e and "Rate limit reached" in str(e):
|
53 |
-
print("Rate Limited!!")
|
54 |
if os.path.exists("data.csv"):
|
55 |
-
print("Loading data from file...")
|
56 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
57 |
return []
|
58 |
models_conclusion["Model"].append(m)
|
|
|
8 |
def get_available_free(use_cache = False):
|
9 |
if use_cache:
|
10 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
11 |
+
# print("Loading data from file...")
|
12 |
return pd.read_csv("data.csv").to_dict(orient='list')
|
13 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
14 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
|
|
22 |
"Chat Completion": [],
|
23 |
"Vision": []
|
24 |
}
|
25 |
+
|
26 |
+
all_models = list(set(models + models_vision + models_others))
|
27 |
+
print(all_models)
|
28 |
+
for m in all_models:
|
29 |
text_available = False
|
30 |
chat_available = False
|
31 |
vision_available = False
|
32 |
if m in models_vision:
|
33 |
vision_available = True
|
34 |
pro_sub = False
|
35 |
+
print(m)
|
36 |
try:
|
37 |
InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
|
38 |
text_available = True
|
39 |
except Exception as e:
|
40 |
+
# print(e)
|
41 |
if e and "Model requires a Pro subscription" in str(e):
|
42 |
pro_sub = True
|
43 |
if e and "Rate limit reached" in str(e):
|
44 |
+
# print("Rate Limited!!")
|
45 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
46 |
+
# print("Loading data from file...")
|
47 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
48 |
return []
|
49 |
try:
|
50 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
51 |
chat_available = True
|
52 |
except Exception as e:
|
53 |
+
# print(e)
|
54 |
if e and "Model requires a Pro subscription" in str(e):
|
55 |
pro_sub = True
|
56 |
if e and "Rate limit reached" in str(e):
|
57 |
+
# print("Rate Limited!!")
|
58 |
if os.path.exists("data.csv"):
|
59 |
+
# print("Loading data from file...")
|
60 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
61 |
return []
|
62 |
models_conclusion["Model"].append(m)
|