Spaces:
Sleeping
Sleeping
File size: 12,779 Bytes
384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 6f1792a 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""Streamlit app for Presidio."""
import os
from json import JSONEncoder
from typing import List
import pandas as pd
import spacy
import streamlit as st
from annotated_text import annotated_text
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from flair_recognizer import FlairRecognizer
from transformers_rec import (
STANFORD_COFIGURATION,
TransformersRecognizer,
BERT_DEID_CONFIGURATION,
)
from openai_fake_data_generator import (
set_openai_key,
call_completion_model,
create_prompt,
)
# Helper methods
@st.cache_resource
def analyzer_engine(model_path: str):
"""Return AnalyzerEngine.
:param model_path: Which model to use for NER:
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg"
"""
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
# Set up NLP Engine according to the model of choice
if model_path == "en_core_web_lg":
if not spacy.util.is_package("en_core_web_lg"):
spacy.cli.download("en_core_web_lg")
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
}
elif model_path == "flair/ner-english-large":
flair_recognizer = FlairRecognizer()
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(flair_recognizer)
registry.remove_recognizer("SpacyRecognizer")
else:
if not spacy.util.is_package("en_core_web_sm"):
spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a HF NER model
transformers_recognizer = TransformersRecognizer(model_path=model_path)
registry.remove_recognizer("SpacyRecognizer")
if model_path == "StanfordAIMI/stanford-deidentifier-base":
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
elif model_path == "obi/deid_roberta_i2b2":
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
# Use small spaCy model, no need for both spacy and HF models
# The transformers model is used here as a recognizer, not as an NlpEngine
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(transformers_recognizer)
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
return analyzer
@st.cache_resource
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
@st.cache_data
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine(st_model).get_supported_entities()
@st.cache_data
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine(st_model).analyze(**kwargs)
def anonymize(text: str, analyze_results: List[RecognizerResult]):
"""Anonymize identified input using Presidio Anonymizer.
:param text: Full text
:param analyze_results: list of results from presidio analyzer engine
"""
if st_operator == "mask":
operator_config = {
"type": "mask",
"masking_char": st_mask_char,
"chars_to_mask": st_number_of_chars,
"from_end": False,
}
# Define operator config
elif st_operator == "encrypt":
operator_config = {"key": st_encrypt_key}
elif st_operator == "highlight":
operator_config = {"lambda": lambda x: x}
else:
operator_config = None
# Change operator if needed as intermediate step
if st_operator == "highlight":
operator = "custom"
elif st_operator == "synthesize":
operator = "replace"
else:
operator = st_operator
res = anonymizer_engine().anonymize(
text,
analyze_results,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
)
return res
def annotate(text: str, analyze_results: List[RecognizerResult]):
"""
Highlights every identified entity on top of the text.
:param text: full text
:param analyze_results: list of analyzer results.
"""
tokens = []
# Use the anonymizer to resolve overlaps
results = anonymize(text, analyze_results)
# sort by start index
results = sorted(results.items, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[: res.start])
# append entity text and entity type
tokens.append((text[res.start : res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end : results[i + 1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end :])
return tokens
def create_fake_data(
text: str,
analyze_results: List[RecognizerResult],
openai_key: str,
openai_model_name: str,
):
"""Creates a synthetic version of the text using OpenAI APIs"""
if not openai_key:
return "Please provide your OpenAI key"
results = anonymize(text, analyze_results)
set_openai_key(openai_key)
prompt = create_prompt(results.text)
fake = call_openai_api(prompt, openai_model_name)
return fake
@st.cache_data
def call_openai_api(prompt: str, openai_model_name: str) -> str:
fake_data = call_completion_model(prompt, model=openai_model_name)
return fake_data
st.set_page_config(page_title="Presidio demo", layout="wide")
# Sidebar
st.sidebar.header(
"""
PII De-Identification with Microsoft Presidio
"""
)
st.sidebar.info(
"Presidio is an open source customizable framework for PII detection and de-identification\n"
"[Code](https://aka.ms/presidio) | "
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
"[Installation](https://microsoft.github.io/presidio/installation/) | "
"[FAQ](https://microsoft.github.io/presidio/faq/)",
icon="ℹ️",
)
st.sidebar.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
st_model = st.sidebar.selectbox(
"NER model for PII detection",
[
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"flair/ner-english-large",
"en_core_web_lg",
],
index=1,
help="""
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair.
""",
)
st.sidebar.markdown("> Note: Models might take some time to download. ")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
index=1,
help="""
Select which manipulation to the text is requested after PII has been identified.\n
- Redact: Completely remove the PII text\n
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n
- Synthesize: Replace with fake values (requires an OpenAI key)\n
- Highlight: Shows the original text with PII highlighted in colors\n
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
- Hash: Replaces with the hash of the PII string\n
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
""",
)
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=15, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
elif st_operator == "synthesize":
st_openai_key = st.sidebar.text_input(
"OPENAI_KEY",
value=os.getenv("OPENAI_KEY", default=""),
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
type="password",
)
st_openai_model = st.sidebar.text_input(
"OpenAI model for text synthesis",
value="text-davinci-003",
help="See more here: https://platform.openai.com/docs/models/",
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold",
min_value=0.0,
max_value=1.0,
value=0.35,
help="Define the threshold for accepting a detection as PII. See more here: ",
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings", value=False,
help="Add the decision process to the output table. More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/"
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
help="Limit the list of PII entities detected. This list is dynamic and based on the NER model and registered recognizers. More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/"
)
# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
label="Enter text",
value="".join(demo_text),
height=400,
)
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
# After
if st_operator not in ("highlight", "synthesize"):
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(st_text, st_analyze_results)
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
elif st_operator == "synthesize":
with col2:
st.subheader(f"OpenAI Generated output")
fake_data = create_fake_data(
st_text,
st_analyze_results,
openai_key=st_openai_key,
openai_model_name=st_openai_model,
)
st.text_area(label="Synthetic data", value=fake_data, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(st_text, st_analyze_results)
# annotated_tokens
annotated_text(*annotated_tokens)
# json result
class ToDictEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
return o.to_dict()
# table result
st.subheader(
"Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
|