Annas Dev
finish vit
319e2a1
raw
history blame contribute delete
775 Bytes
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import numpy as np
import torch
class VitBase():
def __init__(self):
self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
def extract_feature(self, imgs):
features = []
for img in imgs:
inputs = self.feature_extractor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
last_hidden_states = outputs.last_hidden_state
features.append(np.squeeze(last_hidden_states.numpy()).flatten())
return features