Spaces:
Sleeping
Sleeping
from src.model import simlarity_model as model | |
from src.util import image as image_util | |
from src.util import matrix | |
from .model_implements.mobilenet_v3 import ModelnetV3 | |
from .model_implements.vit_base import VitBase | |
from .model_implements.bit import BigTransfer | |
class Similarity: | |
def get_models(self): | |
return [ | |
model.SimilarityModel(name= 'Mobilenet V3', image_size= 224, model_cls = ModelnetV3()), | |
model.SimilarityModel(name= 'Big Transfer (BiT)', image_size= 224, model_cls = BigTransfer()), | |
model.SimilarityModel(name= 'Vision Transformer', image_size= 224, model_cls = VitBase(), image_input_type='pil'), | |
] | |
def check_similarity(self, img_urls, model): | |
imgs = [] | |
for url in img_urls: | |
if url == "": continue | |
imgs.append(image_util.load_image_url(url, required_size=(model.image_size, model.image_size), image_type=model.image_input_type)) | |
features = model.model_cls.extract_feature(imgs) | |
results = [] | |
for i, v in enumerate(features): | |
if i == 0: continue | |
dist = matrix.cosine(features[0], v) | |
print(f'{i} -- distance: {dist}') | |
# results.append((imgs[i], f'similarity: {int(dist*100)}%')) | |
original_img = image_util.load_image_url(img_urls[i], required_size=None, image_type='pil') | |
results.append((original_img, f'similarity: {int(dist*100)}%')) | |
return results | |