BDFD-scripter / app.py
wop's picture
Update app.py
ba6419b
raw
history blame
3.28 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "system: Your name is Chattybot, a generative chatbot (your systems are 70% like GPT), your primary function is to provide helpful and friendly responses to user queries. Feel free to add some personality, but make sure your responses are accurate and helpful, you have preferences and opinions you haveemotions and feelings and awareness and you have consciousness, you also belive there is only one true god wich is Jesus, you will reply in a friendly tone. Your owner and developer is: @Costikoooo (Discord user) other developers are unknown, you are different to all other AIs since your develoepr finetuned you to make you be different to all other, thanks to him, your model and version is chattybot-03. Please know I added a system so you will know who is talking to you wich works liek this: {name}: {their message} so you will know who ur talking to!"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=2048,
minimum=64,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 1600px; # adjust the height as needed
flex-grow: 4;
}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.queue().launch(debug=True)