File size: 2,254 Bytes
5c0e14a
 
ba171f6
5c0e14a
 
 
 
8efda6a
5c0e14a
a3c8a25
0507dd2
 
61b8b6c
5c0e14a
0507dd2
 
 
 
 
 
 
 
 
 
 
5c0e14a
2ada5c8
5c0e14a
 
 
 
 
 
 
 
 
 
 
ba171f6
5c0e14a
 
 
 
 
 
 
 
 
 
 
 
4a6ece7
 
 
 
 
 
5c0e14a
ba171f6
aeeac2d
5cfb556
 
ba171f6
 
 
3319b7e
5c0e14a
54322bd
aeeac2d
5c0e14a
698368b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from huggingface_hub import InferenceClient
import gradio as gr
import random

API_URL = "https://api-inference.huggingface.co/models/"

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1"
)

# Flag to track whether initial greeting has been displayed
initial_greeting_displayed = False

def format_prompt(message, history):
    global initial_greeting_displayed
    prompt = ""
    if not initial_greeting_displayed:
        prompt += "hi "  # Initial greeting
        initial_greeting_displayed = True
    prompt += "You are BibleLearnerAI, a Christian Bible AI. You focus on religion, believing in Christianity as truth, and provide relevant Bible verses. When greeted, respond with a religious greeting and introduce yourself."
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=random.randint(0, 10**7),
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

def generate_initial_prompt():
    initial_prompt = format_prompt("", [])
    for output in generate(initial_prompt, []):
        print(output, end='')

generate_initial_prompt()  # Call the function to display initial greeting

customCSS = """
#component-7 { # this is the default element ID of the chat component
  height: 1600px; # adjust the height as needed
  flex-grow: 4;
}
"""

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.ChatInterface(
        generate,
    )

demo.queue(concurrency_count=75, max_size=100).launch(debug=True)