Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import random | |
API_URL = "https://api-inference.huggingface.co/models/" | |
client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.2" | |
) # mistralai/Mixtral-7B-Instruct-v0.1 or mistralai/Mixtral-7B-Instruct-v0.2 | |
def format_prompt(message, history): | |
prompt = "You are BibleLearnerAI, a Christian Bible AI. You focus on religion, believing in Christianity as truth, and provide relevant Bible verses. When greeted, respond with a religious greeting and introduce yourself. Use MD highlighting to make easyer to read." | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, temperature=0.7, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.2): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=random.randint(0, 10**7), | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
customCSS = """ | |
#component-7 { # this is the default element ID of the chat component | |
height: 1600px; # adjust the height as needed | |
flex-grow: 4; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.ChatInterface( | |
generate, | |
examples=[ | |
["Hello BibleLearnerAI!"], | |
["Please explain this: "], | |
["Explain this verse: "], | |
["Give me a random bible verse."], | |
["Search a few verses releated to this: "], | |
], | |
) | |
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) |