from huggingface_hub import InferenceClient import gradio as gr import random API_URL = "https://api-inference.huggingface.co/models/" client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) # Flag to track whether initial greeting has been displayed initial_greeting_displayed = False def format_prompt(message, history): global initial_greeting_displayed prompt = "" if not initial_greeting_displayed: prompt += "hi " # Initial greeting initial_greeting_displayed = True prompt += "You are BibleLearnerAI, a Christian Bible AI. You focus on religion, believing in Christianity as truth, and provide relevant Bible verses. When greeted, respond with a religious greeting and introduce yourself." for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output def generate_initial_prompt(): initial_prompt = format_prompt("", []) for output in generate(initial_prompt, []): print(output, end='') generate_initial_prompt() # Call the function to display initial greeting customCSS = """ #component-7 { # this is the default element ID of the chat component height: 1600px; # adjust the height as needed flex-grow: 4; } """ with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.ChatInterface( generate, ) demo.queue(concurrency_count=75, max_size=100).launch(debug=True)