Spaces:
Sleeping
Sleeping
File size: 6,765 Bytes
846e270 9cf8e68 d4904e9 9cf8e68 846e270 72f42a0 9cf8e68 72f42a0 2bfa474 71f38ca 9cf8e68 71f38ca 9cf8e68 1897897 d4904e9 72f42a0 d4904e9 9cf8e68 2bfa474 72f42a0 7bcbfac 2bfa474 72f42a0 2bfa474 9cf8e68 72f42a0 9cf8e68 2bfa474 72f42a0 9cf8e68 72f42a0 b53f7b3 72f42a0 9cf8e68 2bfa474 9cf8e68 72f42a0 9cf8e68 72f42a0 1af1861 72f42a0 9cf8e68 2bfa474 9cf8e68 72f42a0 b9f1b65 2bfa474 72f42a0 8c1883c 72f42a0 8c1883c 72f42a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from typing import Generator
from groq import Groq
import datetime
import json
_ = load_dotenv(find_dotenv())
st.set_page_config(page_icon="💬", layout="wide", page_title="...")
def icon(emoji: str):
"""Shows an emoji as a Notion-style page icon."""
st.write(
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
unsafe_allow_html=True,
)
icon("⚡")
st.subheader("Chatbot", divider="rainbow", anchor=False)
# LOGIN
password = os.environ['PASSWORD']
# Create a login form
username = st.text_input("Username")
password_input = st.text_input("Password", type="password")
# Authenticate user
if st.button("Login"):
if username == "admin" and password_input == password:
st.session_state.authenticated = True
else:
st.error("Invalid username or password")
# Only allow access to the app if the user is authenticated
if "authenticated" not in st.session_state or not st.session_state.authenticated:
st.stop() # Stop the app from running if the user is not authenticated
client = Groq(
api_key=os.environ['GROQ_API_KEY'],
)
# Initialize chat history and selected model
if "messages" not in st.session_state:
st.session_state.messages = []
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
# prompts
prompts = {
"none": "",
"python interpreter": "emulate the output of this program like you are the python interpreter, only answer with the result of this emulation. Ask the user for each missing input, sequentially and only once per message, in the same way a python interpreter would. Do not fill in for my inputs. Take my inputs from the message directly after you ask for input."
}
# Define model details
models = {
"mixtral-8x7b-32768": {
"name": "Mixtral-8x7b-Instruct-v0.1",
"tokens": 32768,
"developer": "Mistral",
},
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
"llama3-70b-8192": {"name": "LLaMA3-70b-8192", "tokens": 8192, "developer": "Meta"},
"llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"},
}
# Layout for model selection and max_tokens slider
col1, col2, col3 = st.columns(3)
with col1:
model_option = st.selectbox(
"Choose a model:",
options=list(models.keys()),
format_func=lambda x: x,
index=0, # Default to the first model in the list
)
# Detect model change and clear chat history if model has changed
if st.session_state.selected_model != model_option:
st.session_state.messages = []
st.session_state.selected_model = model_option
max_tokens_range = models[model_option]["tokens"]
with col2:
# Adjust max_tokens slider dynamically based on the selected model
max_tokens = st.slider(
"Max Tokens:",
min_value=512, # Minimum value to allow some flexibility
max_value=max_tokens_range,
# Default value or max allowed if less
value=min(32768, max_tokens_range),
step=512,
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}",
)
with col3:
prompt_selection = st.selectbox(
"Choose a prompt:",
options=list(prompts.keys()),
format_func=lambda x: x,
index=0,
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
avatar = "🧠" if message["role"] == "assistant" else "❓"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
"""Yield chat response content from the Groq API response."""
for chunk in chat_completion:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
if prompt := st.chat_input("Enter your prompt here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="❓"):
st.markdown(prompt)
# Fetch response from Groq API
try:
chat_completion = client.chat.completions.create(
model=model_option,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=True,
)
# Use the generator function with st.write_stream
with st.chat_message("assistant", avatar="🧠"):
chat_responses_generator = generate_chat_responses(chat_completion)
full_response = st.write_stream(chat_responses_generator)
except Exception as e:
st.error(e, icon="🚨")
# Append the full response to session_state.messages
if isinstance(full_response, str):
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
else:
# Handle the case where full_response is not a string
combined_response = "\n".join(str(item) for item in full_response)
st.session_state.messages.append(
{"role": "assistant", "content": combined_response}
)
if prompt := prompts.get(prompt_selection):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="❓"):
st.markdown(prompt)
# Fetch response from Groq API
try:
chat_completion = client.chat.completions.create(
model=model_option,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=True,
)
# Use the generator function with st.write_stream
with st.chat_message("assistant", avatar="🧠"):
chat_responses_generator = generate_chat_responses(chat_completion)
full_response = st.write_stream(chat_responses_generator)
except Exception as e:
st.error(e, icon="🚨")
# Append the full response to session_state.messages
if isinstance(full_response, str):
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
else:
# Handle the case where full_response is not a string
combined_response = "\n".join(str(item) for item in full_response)
st.session_state.messages.append(
{"role": "assistant", "content": combined_response}
) |