import os from dotenv import find_dotenv, load_dotenv import streamlit as st from typing import Generator from groq import Groq import requests from bs4 import BeautifulSoup _ = load_dotenv(find_dotenv()) st.set_page_config(page_icon="💬", layout="wide", page_title="Groq Chat Bot...") def icon(emoji: str): """Shows an emoji as a Notion-style page icon.""" st.write( f'{emoji}', unsafe_allow_html=True, ) icon("⚡") st.subheader("GroqChatbot", divider="rainbow", anchor=False) client = Groq(api_key=os.environ['GROQ_API_KEY']) if "messages" not in st.session_state: st.session_state.messages = [] if "selected_model" not in st.session_state: st.session_state.selected_model = None models = { "mixtral-8x7b-32768": {"name": "Mixtral-8x7b-Instruct-v0.1", "tokens": 32768, "developer": "Mistral"}, "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"}, "llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"}, "llama3-70b-8192": {"name": "LLaMA3-70b-8192", "tokens": 8192, "developer": "Meta"}, "llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"}, } col1, col2 = st.columns(2) with col1: model_option = st.selectbox( "Choose a model:", options=list(models.keys()), format_func=lambda x: models[x]["name"], index=0, ) if st.session_state.selected_model != model_option: st.session_state.messages = [] st.session_state.selected_model = model_option max_tokens_range = models[model_option]["tokens"] with col2: max_tokens = st.slider( "Max Tokens:", min_value=512, max_value=max_tokens_range, value=min(32768, max_tokens_range), step=512, help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}", ) for message in st.session_state.messages: avatar = "🤖" if message["role"] == "assistant" else "🕺" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) def generate_chat_responses(chat_completion) -> Generator[str, None, None]: """Yield chat response content from the Groq API response.""" for chunk in chat_completion: if chunk.choices[0].delta.content: yield chunk.choices[0].delta.content def search_web(query): result = {"query": query, "data": {}} try: search_url = f"https://www.google.com/search?q={query}" response = requests.get(search_url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') # Scrape organic search results result["data"]["organic"] = [] for result in soup.find_all('div', class_='g'): title = result.find('a')['title'] url = result.find('a')['href'] snippet = result.find('span', class_='aCOpRe').text item = {"title": title, "url": url, "snippet": snippet} result["data"]["organic"].append(item) # Scrape knowledge panel result["data"]["knowledge_panel"] = {} if soup.find('div', id='knowledge-kp'): result["data"]["knowledge_panel"]["title"] = soup.find('div', id='knowledge-kp').find('h3').text result["data"]["knowledge_panel"]["content"] = soup.find('div', id='knowledge-kp').find('div', class_='VwiC3b').text # Scrape images result["data"]["images"] = [] for result in soup.find_all('div', class_='hdtb-mitem hdtb-msel'): title = result.find('a')['title'] url = result.find('a')['href'] snippet = "" item = {"title": title, "url": url, "snippet": snippet} result["data"]["images"].append(item) else: result["error"] = "Failed to retrieve search results" except Exception as e: result["error"] = f"An error occurred: {e}" return result full_response = None # Initialize full_response to None if prompt := st.chat_input("Enter your prompt here..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user", avatar="🕺"): st.markdown(prompt) try: if "search for" in prompt.lower(): query = prompt.lower().replace("search for", "").strip() search_results = search_web(query) formatted_results = "\n\n".join([f"Title: {result['title']}\nURL: {result['url']}\nSnippet: {result['snippet']}" for result in search_results]) st.session_state.messages.append({"role": "assistant", "content": formatted_results}) with st.chat_message("assistant", avatar="🤖"): full_response = formatted_results else: chat_completion = client.chat.completions.create( model=model_option, messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], max_tokens=max_tokens, stream=True, ) with st.chat_message("assistant", avatar="🤖"): chat_responses_generator = generate_chat_responses(chat_completion) full_response = st.write_stream(chat_responses_generator) except Exception as e: st.error(e, icon="🚨") # Check if full_response is defined before using it if full_response is not None: if isinstance(full_response, str): st.session_state.messages.append( {"role": "assistant", "content": full_response} ) else: combined_response = "\n".join(str(item) for item in full_response) st.session_state.messages.append( {"role": "assistant", "content": combined_response} )