File size: 2,543 Bytes
5c0e14a
 
ba171f6
5c0e14a
 
 
 
ce1d6ca
5c0e14a
 
 
22d307f
5c0e14a
 
 
 
 
 
2689763
5c0e14a
 
 
 
 
 
 
 
 
 
 
ba171f6
5c0e14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d307f
5c0e14a
 
 
 
 
 
 
 
22d307f
4611fc3
c2d1261
5c0e14a
 
 
 
 
 
22d307f
5c0e14a
 
 
 
 
 
 
 
22d307f
5c0e14a
 
 
 
 
 
 
 
ba171f6
aeeac2d
5cfb556
 
ba171f6
 
 
3319b7e
5c0e14a
 
 
aeeac2d
5c0e14a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from huggingface_hub import InferenceClient
import gradio as gr
import random

API_URL = "https://api-inference.huggingface.co/models/"

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.2"
)

def format_prompt(message, history):
  prompt = "Your name is HTML-AI, you will code a standalone one html file for the user, make sure to ask the user what changes to make."
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=random.randint(0, 10**7),
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.95,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=4096,
        minimum=64,
        maximum=4096,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.95,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

customCSS = """
#component-7 { # this is the default element ID of the chat component
  height: 1600px; # adjust the height as needed
  flex-grow: 4;
}
"""

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
    )

demo.queue().launch(debug=True)