import gradio as gr from transformers import AutoModelForCausalLM import torch # Load the model model_name = "wop/kosmox-gguf" model = AutoModelForCausalLM.from_pretrained(model_name) # Define the chat template function def format_chat(messages, add_generation_prompt): formatted = "" for message in messages: if message['from'] == 'human': formatted += ' ' + message['value'] + ' ' elif message['from'] == 'gpt': formatted += ' ' + message['value'] + ' ' else: formatted += '<|' + message['from'] + '|> ' + message['value'] + ' ' if add_generation_prompt: formatted += ' ' return formatted # Function to generate responses def respond(message, history, system_message, max_tokens, temperature, top_p): # Prepare the chat history messages = [{"from": "system", "value": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"from": "human", "value": user_msg}) if bot_msg: messages.append({"from": "gpt", "value": bot_msg}) messages.append({"from": "human", "value": message}) # Format the chat input for the model chat_input = format_chat(messages, add_generation_prompt=False) # Tokenize input (assuming model can handle raw text inputs internally) inputs = torch.tensor([ord(c) for c in chat_input]).unsqueeze(0) # Dummy tokenization # Generate response with torch.no_grad(): outputs = model.generate( input_ids=inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) response = ''.join([chr(t) for t in outputs[0].tolist() if t < 256]) # Dummy decoding yield response.strip() # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # Launch the demo if __name__ == "__main__": demo.launch()