Spaces:
Runtime error
Runtime error
File size: 2,841 Bytes
1acd416 8206f72 1acd416 283f036 1acd416 a0690fd 1acd416 a0690fd 1acd416 a0690fd 1acd416 a0690fd 1acd416 f5c23b8 1acd416 f5c23b8 1acd416 f5c23b8 1acd416 f5c23b8 1acd416 f5c23b8 1acd416 01613c6 1acd416 a0690fd 1acd416 628e0ac 1acd416 628e0ac 1acd416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
import wave
import matplotlib.pyplot as plt
import numpy as np
from extract_features import *
import pickle
import soundfile
import librosa
classifier = pickle.load(open('finalized_rf.sav', 'rb'))
def emotion_predict(input):
input_features = extract_feature(input, mfcc=True, chroma=True, mel=True, contrast=True, tonnetz=True)
rf_prediction = classifier.predict(input_features.reshape(1,-1))
if rf_prediction == 'happy':
return 'kata-benda π'
elif rf_prediction == 'neutral':
return 'kata-kerja π'
elif rf_prediction == 'sad':
return 'kata-sifat π’'
else:
return 'kata-keterangan π€'
def plot_fig(input):
wav = wave.open(input, 'r')
raw = wav.readframes(-1)
raw = np.frombuffer(raw, "int16")
sampleRate = wav.getframerate()
Time = np.linspace(0, len(raw)/sampleRate, num=len(raw))
fig = plt.figure()
plt.rcParams["figure.figsize"] = (50,15)
plt.title("Waveform Of the Audio", fontsize=25)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.ylabel("Amplitude", fontsize=25)
plt.plot(Time, raw, color='red')
return fig
with gr.Blocks() as app:
gr.Markdown(
"""
Speech Predict Detector π΅π
This application classifies inputted audio π according to the prediction into four categories:
1. kata-benda π
2. kata-kerja π
3. kata-sifat π’
4. kata-keterangan π€
"""
)
with gr.Tab("Record Audio"):
record_input = gr.Audio(source="microphone", type="filepath")
with gr.Accordion("Audio Visualization", open=False):
gr.Markdown(
"""
### Visualization will work only after Audio has been submitted
"""
)
plot_record = gr.Button("Display Audio Signal")
plot_record_c = gr.Plot(label='Waveform Of the Audio')
record_button = gr.Button("Detect Emotion")
record_output = gr.Text(label = 'Emotion Detected')
with gr.Tab("Upload Audio File"):
gr.Markdown(
"""
## Uploaded Audio should be of .wav format
"""
)
upload_input = gr.Audio(type="filepath")
with gr.Accordion("Audio Visualization", open=False):
gr.Markdown(
"""
### Visualization will work only after Audio has been submitted
"""
)
plot_upload = gr.Button("Display Audio Signal")
plot_upload_c = gr.Plot(label='Waveform Of the Audio')
upload_button = gr.Button("Detect Emotion")
upload_output = gr.Text(label = 'Emotion Detected')
record_button.click(emotion_predict, inputs=record_input, outputs=record_output)
upload_button.click(emotion_predict, inputs=upload_input, outputs=upload_output)
plot_record.click(plot_fig, inputs=record_input, outputs=plot_record_c)
plot_upload.click(plot_fig, inputs=upload_input, outputs=plot_upload_c)
app.launch() |