add DebugInfo
Browse files
app.py
CHANGED
@@ -33,6 +33,8 @@ def main(
|
|
33 |
base_model
|
34 |
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
|
35 |
|
|
|
|
|
36 |
prompter = Prompter(prompt_template)
|
37 |
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
38 |
if device == "cuda":
|
@@ -91,6 +93,8 @@ def main(
|
|
91 |
max_new_tokens=256,
|
92 |
**kwargs,
|
93 |
):
|
|
|
|
|
94 |
prompt = prompter.generate_prompt(instruction, input)
|
95 |
inputs = tokenizer(prompt, return_tensors="pt")
|
96 |
input_ids = inputs["input_ids"].to(device)
|
@@ -111,7 +115,8 @@ def main(
|
|
111 |
)
|
112 |
s = generation_output.sequences[0]
|
113 |
output = tokenizer.decode(s)
|
114 |
-
|
|
|
115 |
|
116 |
gr.Interface(
|
117 |
fn=evaluate,
|
@@ -143,6 +148,11 @@ def main(
|
|
143 |
lines=5,
|
144 |
label="Output",
|
145 |
)
|
|
|
|
|
|
|
|
|
|
|
146 |
],
|
147 |
title="🦙🌲 Alpaca-LoRA",
|
148 |
description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", # noqa: E501
|
|
|
33 |
base_model
|
34 |
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
|
35 |
|
36 |
+
DebugInfo=[] #this is mainly for debug 2023.08.25
|
37 |
+
|
38 |
prompter = Prompter(prompt_template)
|
39 |
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
40 |
if device == "cuda":
|
|
|
93 |
max_new_tokens=256,
|
94 |
**kwargs,
|
95 |
):
|
96 |
+
DebugInfo.append("1.Enter in evaluate.")#TBD
|
97 |
+
|
98 |
prompt = prompter.generate_prompt(instruction, input)
|
99 |
inputs = tokenizer(prompt, return_tensors="pt")
|
100 |
input_ids = inputs["input_ids"].to(device)
|
|
|
115 |
)
|
116 |
s = generation_output.sequences[0]
|
117 |
output = tokenizer.decode(s)
|
118 |
+
DebugInfo.append("2.Generate out decode completed.")#TBD
|
119 |
+
return prompter.get_response(output),DebugInfo
|
120 |
|
121 |
gr.Interface(
|
122 |
fn=evaluate,
|
|
|
148 |
lines=5,
|
149 |
label="Output",
|
150 |
)
|
151 |
+
,
|
152 |
+
gr.inputs.Textbox(
|
153 |
+
lines=5,
|
154 |
+
label="DebugInfo",
|
155 |
+
)
|
156 |
],
|
157 |
title="🦙🌲 Alpaca-LoRA",
|
158 |
description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", # noqa: E501
|