wormcode commited on
Commit
768c7d3
·
verified ·
1 Parent(s): 8561f89

Upload folder using huggingface_hub

Browse files
Files changed (29) hide show
  1. .ipynb_checkpoints/README-checkpoint.md +202 -0
  2. README.md +199 -9
  3. adapter_config.json +26 -6
  4. adapter_model.safetensors +3 -0
  5. checkpoint-500/.ipynb_checkpoints/trainer_state-checkpoint.json +3545 -0
  6. checkpoint-500/README.md +202 -0
  7. checkpoint-500/adapter_config.json +37 -0
  8. checkpoint-500/adapter_model.safetensors +3 -0
  9. checkpoint-500/optimizer.pt +3 -0
  10. checkpoint-500/rng_state.pth +3 -0
  11. checkpoint-500/scheduler.pt +3 -0
  12. checkpoint-500/special_tokens_map.json +24 -0
  13. checkpoint-500/tokenizer.json +0 -0
  14. checkpoint-500/tokenizer.model +3 -0
  15. checkpoint-500/tokenizer_config.json +42 -0
  16. checkpoint-500/trainer_state.json +3545 -0
  17. checkpoint-500/training_args.bin +3 -0
  18. runs/Nov04_00-07-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1730650101.autodl-container-4be511b1ae-46466da0.1254.0 +3 -0
  19. runs/Nov04_00-10-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1730650280.autodl-container-4be511b1ae-46466da0.1417.0 +3 -0
  20. runs/Oct22_22-32-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729607600.autodl-container-4be511b1ae-46466da0.1125.0 +3 -0
  21. runs/Oct22_23-34-53_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729611338.autodl-container-4be511b1ae-46466da0.845.0 +3 -0
  22. runs/Oct24_22-55-18_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729781767.autodl-container-4be511b1ae-46466da0.884.0 +3 -0
  23. runs/Oct25_00-15-00_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729786546.autodl-container-4be511b1ae-46466da0.861.0 +3 -0
  24. special_tokens_map.json +24 -0
  25. tokenizer.json +0 -0
  26. tokenizer.model +3 -0
  27. tokenizer_config.json +42 -0
  28. trainer_state.json +0 -0
  29. training_args.bin +3 -0
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HIT-SCIR/Chinese-Mixtral-8x7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
README.md CHANGED
@@ -1,12 +1,202 @@
1
  ---
2
- title: AskDoctor
3
- emoji: 👁
4
- colorFrom: gray
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 3.40.1
8
- app_file: app.py
9
- pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: HIT-SCIR/Chinese-Mixtral-8x7B
3
+ library_name: peft
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json CHANGED
@@ -1,17 +1,37 @@
1
  {
2
- "base_model_name_or_path": "./",
 
 
3
  "bias": "none",
4
  "fan_in_fan_out": false,
5
  "inference_mode": true,
6
  "init_lora_weights": true,
7
- "lora_alpha": 16,
 
 
 
 
8
  "lora_dropout": 0.05,
9
- "modules_to_save": null,
 
 
 
 
 
10
  "peft_type": "LORA",
11
- "r": 8,
 
 
12
  "target_modules": [
 
 
 
13
  "q_proj",
14
- "v_proj"
 
 
15
  ],
16
- "task_type": "CAUSAL_LM"
 
 
17
  }
 
1
  {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HIT-SCIR/Chinese-Mixtral-8x7B",
5
  "bias": "none",
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
8
  "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
  "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "embed_tokens",
19
+ "lm_head"
20
+ ],
21
  "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
  "target_modules": [
26
+ "o_proj",
27
+ "w3",
28
+ "w2",
29
  "q_proj",
30
+ "v_proj",
31
+ "k_proj",
32
+ "w1"
33
  ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
  }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11c4730bc0c2a58c07e2e01fd966dd2e2883400bd7cd38a127a5ed75da1d0c71
3
+ size 2855150432
checkpoint-500/.ipynb_checkpoints/trainer_state-checkpoint.json ADDED
@@ -0,0 +1,3545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6620762711864406,
5
+ "eval_steps": 200,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0013241525423728813,
13
+ "grad_norm": 26.125,
14
+ "learning_rate": 2.6315789473684213e-07,
15
+ "loss": 3.7676,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0013241525423728813,
20
+ "eval_AskDoctor-Chinese_loss": 3.761261463165283,
21
+ "eval_AskDoctor-Chinese_runtime": 15.9737,
22
+ "eval_AskDoctor-Chinese_samples_per_second": 1.878,
23
+ "eval_AskDoctor-Chinese_steps_per_second": 1.878,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0026483050847457626,
28
+ "grad_norm": 27.375,
29
+ "learning_rate": 5.263157894736843e-07,
30
+ "loss": 3.8885,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.003972457627118644,
35
+ "grad_norm": 28.125,
36
+ "learning_rate": 7.894736842105263e-07,
37
+ "loss": 3.8601,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.005296610169491525,
42
+ "grad_norm": 26.25,
43
+ "learning_rate": 1.0526315789473685e-06,
44
+ "loss": 3.8192,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.0066207627118644065,
49
+ "grad_norm": 29.0,
50
+ "learning_rate": 1.3157894736842106e-06,
51
+ "loss": 3.7572,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.007944915254237288,
56
+ "grad_norm": 30.5,
57
+ "learning_rate": 1.5789473684210526e-06,
58
+ "loss": 3.9407,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.009269067796610169,
63
+ "grad_norm": 30.25,
64
+ "learning_rate": 1.8421052631578948e-06,
65
+ "loss": 3.9034,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01059322033898305,
70
+ "grad_norm": 30.5,
71
+ "learning_rate": 2.105263157894737e-06,
72
+ "loss": 3.7951,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.011917372881355932,
77
+ "grad_norm": 26.0,
78
+ "learning_rate": 2.368421052631579e-06,
79
+ "loss": 3.7,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.013241525423728813,
84
+ "grad_norm": 28.625,
85
+ "learning_rate": 2.631578947368421e-06,
86
+ "loss": 3.6931,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.014565677966101694,
91
+ "grad_norm": 25.125,
92
+ "learning_rate": 2.8947368421052634e-06,
93
+ "loss": 3.5419,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.015889830508474576,
98
+ "grad_norm": 25.5,
99
+ "learning_rate": 3.157894736842105e-06,
100
+ "loss": 3.6584,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.017213983050847457,
105
+ "grad_norm": 23.875,
106
+ "learning_rate": 3.421052631578948e-06,
107
+ "loss": 3.5614,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.018538135593220338,
112
+ "grad_norm": 23.875,
113
+ "learning_rate": 3.6842105263157896e-06,
114
+ "loss": 3.5783,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.01986228813559322,
119
+ "grad_norm": 23.25,
120
+ "learning_rate": 3.947368421052632e-06,
121
+ "loss": 3.5407,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.0211864406779661,
126
+ "grad_norm": 22.0,
127
+ "learning_rate": 4.210526315789474e-06,
128
+ "loss": 3.3536,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.022510593220338982,
133
+ "grad_norm": 20.0,
134
+ "learning_rate": 4.473684210526316e-06,
135
+ "loss": 3.2685,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.023834745762711863,
140
+ "grad_norm": 19.5,
141
+ "learning_rate": 4.736842105263158e-06,
142
+ "loss": 3.3136,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.025158898305084745,
147
+ "grad_norm": 18.875,
148
+ "learning_rate": 5e-06,
149
+ "loss": 3.3371,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.026483050847457626,
154
+ "grad_norm": 26.125,
155
+ "learning_rate": 5.263157894736842e-06,
156
+ "loss": 3.2935,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.027807203389830507,
161
+ "grad_norm": 18.375,
162
+ "learning_rate": 5.526315789473685e-06,
163
+ "loss": 3.1542,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.02913135593220339,
168
+ "grad_norm": 16.125,
169
+ "learning_rate": 5.789473684210527e-06,
170
+ "loss": 3.0697,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.03045550847457627,
175
+ "grad_norm": 17.75,
176
+ "learning_rate": 6.0526315789473685e-06,
177
+ "loss": 3.0135,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.03177966101694915,
182
+ "grad_norm": 16.5,
183
+ "learning_rate": 6.31578947368421e-06,
184
+ "loss": 2.9917,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.033103813559322036,
189
+ "grad_norm": 14.5625,
190
+ "learning_rate": 6.578947368421054e-06,
191
+ "loss": 2.9261,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.034427966101694914,
196
+ "grad_norm": 20.375,
197
+ "learning_rate": 6.842105263157896e-06,
198
+ "loss": 2.8072,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.0357521186440678,
203
+ "grad_norm": 13.375,
204
+ "learning_rate": 7.1052631578947375e-06,
205
+ "loss": 2.876,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.037076271186440676,
210
+ "grad_norm": 12.5,
211
+ "learning_rate": 7.368421052631579e-06,
212
+ "loss": 2.7867,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.03840042372881356,
217
+ "grad_norm": 14.625,
218
+ "learning_rate": 7.631578947368423e-06,
219
+ "loss": 2.6454,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.03972457627118644,
224
+ "grad_norm": 16.625,
225
+ "learning_rate": 7.894736842105265e-06,
226
+ "loss": 2.6395,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.041048728813559324,
231
+ "grad_norm": 10.1875,
232
+ "learning_rate": 8.157894736842106e-06,
233
+ "loss": 2.5909,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.0423728813559322,
238
+ "grad_norm": 12.4375,
239
+ "learning_rate": 8.421052631578948e-06,
240
+ "loss": 2.5511,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.043697033898305086,
245
+ "grad_norm": 10.375,
246
+ "learning_rate": 8.68421052631579e-06,
247
+ "loss": 2.4177,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.045021186440677964,
252
+ "grad_norm": 8.5625,
253
+ "learning_rate": 8.947368421052632e-06,
254
+ "loss": 2.4405,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.04634533898305085,
259
+ "grad_norm": 8.5625,
260
+ "learning_rate": 9.210526315789474e-06,
261
+ "loss": 2.5073,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.04766949152542373,
266
+ "grad_norm": 7.625,
267
+ "learning_rate": 9.473684210526315e-06,
268
+ "loss": 2.4031,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.04899364406779661,
273
+ "grad_norm": 9.375,
274
+ "learning_rate": 9.736842105263159e-06,
275
+ "loss": 2.4698,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.05031779661016949,
280
+ "grad_norm": 6.75,
281
+ "learning_rate": 1e-05,
282
+ "loss": 2.4379,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.051641949152542374,
287
+ "grad_norm": 7.59375,
288
+ "learning_rate": 9.999952004474853e-06,
289
+ "loss": 2.3739,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.05296610169491525,
294
+ "grad_norm": 6.375,
295
+ "learning_rate": 9.999808018820836e-06,
296
+ "loss": 2.433,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.05429025423728814,
301
+ "grad_norm": 5.96875,
302
+ "learning_rate": 9.999568045802216e-06,
303
+ "loss": 2.4569,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.055614406779661014,
308
+ "grad_norm": 5.59375,
309
+ "learning_rate": 9.99923209002605e-06,
310
+ "loss": 2.3297,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.0569385593220339,
315
+ "grad_norm": 5.5,
316
+ "learning_rate": 9.998800157942083e-06,
317
+ "loss": 2.3064,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.05826271186440678,
322
+ "grad_norm": 5.375,
323
+ "learning_rate": 9.99827225784264e-06,
324
+ "loss": 2.2746,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.05958686440677966,
329
+ "grad_norm": 4.9375,
330
+ "learning_rate": 9.997648399862457e-06,
331
+ "loss": 2.2981,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.06091101694915254,
336
+ "grad_norm": 5.5625,
337
+ "learning_rate": 9.99692859597849e-06,
338
+ "loss": 2.0856,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.062235169491525424,
343
+ "grad_norm": 5.71875,
344
+ "learning_rate": 9.996112860009689e-06,
345
+ "loss": 2.1083,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.0635593220338983,
350
+ "grad_norm": 5.53125,
351
+ "learning_rate": 9.995201207616718e-06,
352
+ "loss": 2.1841,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.06488347457627118,
357
+ "grad_norm": 4.65625,
358
+ "learning_rate": 9.994193656301676e-06,
359
+ "loss": 2.3351,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.06620762711864407,
364
+ "grad_norm": 5.1875,
365
+ "learning_rate": 9.993090225407743e-06,
366
+ "loss": 2.2625,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.06753177966101695,
371
+ "grad_norm": 13.0625,
372
+ "learning_rate": 9.991890936118817e-06,
373
+ "loss": 2.1591,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.06885593220338983,
378
+ "grad_norm": 4.53125,
379
+ "learning_rate": 9.990595811459109e-06,
380
+ "loss": 2.2935,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.0701800847457627,
385
+ "grad_norm": 4.46875,
386
+ "learning_rate": 9.98920487629269e-06,
387
+ "loss": 2.4604,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.0715042372881356,
392
+ "grad_norm": 4.5625,
393
+ "learning_rate": 9.987718157323026e-06,
394
+ "loss": 2.249,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.07282838983050847,
399
+ "grad_norm": 4.59375,
400
+ "learning_rate": 9.986135683092461e-06,
401
+ "loss": 2.2686,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.07415254237288135,
406
+ "grad_norm": 4.21875,
407
+ "learning_rate": 9.98445748398167e-06,
408
+ "loss": 2.291,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.07547669491525423,
413
+ "grad_norm": 4.28125,
414
+ "learning_rate": 9.982683592209069e-06,
415
+ "loss": 2.1275,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.07680084745762712,
420
+ "grad_norm": 12.875,
421
+ "learning_rate": 9.980814041830203e-06,
422
+ "loss": 2.1489,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.078125,
427
+ "grad_norm": 4.375,
428
+ "learning_rate": 9.978848868737099e-06,
429
+ "loss": 2.271,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.07944915254237288,
434
+ "grad_norm": 4.84375,
435
+ "learning_rate": 9.976788110657558e-06,
436
+ "loss": 2.3377,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.08077330508474577,
441
+ "grad_norm": 4.09375,
442
+ "learning_rate": 9.974631807154447e-06,
443
+ "loss": 2.3359,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.08209745762711865,
448
+ "grad_norm": 4.25,
449
+ "learning_rate": 9.972379999624935e-06,
450
+ "loss": 2.2142,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.08342161016949153,
455
+ "grad_norm": 12.375,
456
+ "learning_rate": 9.970032731299697e-06,
457
+ "loss": 2.1888,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.0847457627118644,
462
+ "grad_norm": 4.15625,
463
+ "learning_rate": 9.967590047242082e-06,
464
+ "loss": 2.3571,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.0860699152542373,
469
+ "grad_norm": 4.25,
470
+ "learning_rate": 9.96505199434725e-06,
471
+ "loss": 2.1241,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.08739406779661017,
476
+ "grad_norm": 4.65625,
477
+ "learning_rate": 9.962418621341275e-06,
478
+ "loss": 2.0733,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.08871822033898305,
483
+ "grad_norm": 9.75,
484
+ "learning_rate": 9.959689978780207e-06,
485
+ "loss": 2.1612,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.09004237288135593,
490
+ "grad_norm": 4.4375,
491
+ "learning_rate": 9.956866119049095e-06,
492
+ "loss": 2.1519,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.09136652542372882,
497
+ "grad_norm": 9.125,
498
+ "learning_rate": 9.953947096360996e-06,
499
+ "loss": 2.1352,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.0926906779661017,
504
+ "grad_norm": 4.25,
505
+ "learning_rate": 9.950932966755917e-06,
506
+ "loss": 2.1954,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.09401483050847458,
511
+ "grad_norm": 4.03125,
512
+ "learning_rate": 9.947823788099754e-06,
513
+ "loss": 2.1761,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.09533898305084745,
518
+ "grad_norm": 3.921875,
519
+ "learning_rate": 9.94461962008317e-06,
520
+ "loss": 2.1397,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.09666313559322035,
525
+ "grad_norm": 4.625,
526
+ "learning_rate": 9.941320524220455e-06,
527
+ "loss": 2.1281,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.09798728813559322,
532
+ "grad_norm": 7.96875,
533
+ "learning_rate": 9.937926563848345e-06,
534
+ "loss": 1.8948,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.0993114406779661,
539
+ "grad_norm": 4.75,
540
+ "learning_rate": 9.934437804124807e-06,
541
+ "loss": 2.3239,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.10063559322033898,
546
+ "grad_norm": 3.984375,
547
+ "learning_rate": 9.93085431202778e-06,
548
+ "loss": 2.3193,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.10195974576271187,
553
+ "grad_norm": 4.34375,
554
+ "learning_rate": 9.9271761563539e-06,
555
+ "loss": 2.0956,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.10328389830508475,
560
+ "grad_norm": 4.65625,
561
+ "learning_rate": 9.92340340771717e-06,
562
+ "loss": 2.3226,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.10460805084745763,
567
+ "grad_norm": 4.6875,
568
+ "learning_rate": 9.919536138547611e-06,
569
+ "loss": 2.1505,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.1059322033898305,
574
+ "grad_norm": 6.1875,
575
+ "learning_rate": 9.915574423089872e-06,
576
+ "loss": 2.0939,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.1072563559322034,
581
+ "grad_norm": 12.75,
582
+ "learning_rate": 9.911518337401792e-06,
583
+ "loss": 2.2263,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.10858050847457627,
588
+ "grad_norm": 4.03125,
589
+ "learning_rate": 9.907367959352964e-06,
590
+ "loss": 2.1133,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.10990466101694915,
595
+ "grad_norm": 3.984375,
596
+ "learning_rate": 9.903123368623216e-06,
597
+ "loss": 2.1183,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.11122881355932203,
602
+ "grad_norm": 4.46875,
603
+ "learning_rate": 9.898784646701087e-06,
604
+ "loss": 2.1461,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.11255296610169492,
609
+ "grad_norm": 4.53125,
610
+ "learning_rate": 9.894351876882277e-06,
611
+ "loss": 2.1963,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.1138771186440678,
616
+ "grad_norm": 5.09375,
617
+ "learning_rate": 9.889825144268029e-06,
618
+ "loss": 2.1679,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.11520127118644068,
623
+ "grad_norm": 4.34375,
624
+ "learning_rate": 9.88520453576351e-06,
625
+ "loss": 2.1925,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.11652542372881355,
630
+ "grad_norm": 4.0625,
631
+ "learning_rate": 9.88049014007613e-06,
632
+ "loss": 2.1166,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.11784957627118645,
637
+ "grad_norm": 3.796875,
638
+ "learning_rate": 9.875682047713847e-06,
639
+ "loss": 2.0244,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.11917372881355932,
644
+ "grad_norm": 4.125,
645
+ "learning_rate": 9.87078035098343e-06,
646
+ "loss": 2.1427,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.1204978813559322,
651
+ "grad_norm": 4.25,
652
+ "learning_rate": 9.865785143988684e-06,
653
+ "loss": 2.2495,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.12182203389830508,
658
+ "grad_norm": 4.21875,
659
+ "learning_rate": 9.860696522628638e-06,
660
+ "loss": 2.1213,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.12314618644067797,
665
+ "grad_norm": 4.40625,
666
+ "learning_rate": 9.855514584595719e-06,
667
+ "loss": 2.1922,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.12447033898305085,
672
+ "grad_norm": 4.21875,
673
+ "learning_rate": 9.850239429373855e-06,
674
+ "loss": 2.16,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.12579449152542374,
679
+ "grad_norm": 4.1875,
680
+ "learning_rate": 9.84487115823659e-06,
681
+ "loss": 2.1521,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.1271186440677966,
686
+ "grad_norm": 4.375,
687
+ "learning_rate": 9.839409874245118e-06,
688
+ "loss": 2.1293,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.1284427966101695,
693
+ "grad_norm": 8.6875,
694
+ "learning_rate": 9.833855682246319e-06,
695
+ "loss": 2.1652,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.12976694915254236,
700
+ "grad_norm": 4.03125,
701
+ "learning_rate": 9.828208688870736e-06,
702
+ "loss": 2.0963,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.13109110169491525,
707
+ "grad_norm": 4.3125,
708
+ "learning_rate": 9.822469002530531e-06,
709
+ "loss": 2.1573,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.13241525423728814,
714
+ "grad_norm": 3.75,
715
+ "learning_rate": 9.816636733417413e-06,
716
+ "loss": 2.1625,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.133739406779661,
721
+ "grad_norm": 4.25,
722
+ "learning_rate": 9.810711993500506e-06,
723
+ "loss": 2.1151,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.1350635593220339,
728
+ "grad_norm": 4.125,
729
+ "learning_rate": 9.804694896524215e-06,
730
+ "loss": 2.0776,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.1363877118644068,
735
+ "grad_norm": 4.15625,
736
+ "learning_rate": 9.79858555800603e-06,
737
+ "loss": 2.0534,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.13771186440677965,
742
+ "grad_norm": 3.953125,
743
+ "learning_rate": 9.792384095234312e-06,
744
+ "loss": 1.994,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.13903601694915255,
749
+ "grad_norm": 4.5,
750
+ "learning_rate": 9.78609062726605e-06,
751
+ "loss": 1.9252,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.1403601694915254,
756
+ "grad_norm": 3.90625,
757
+ "learning_rate": 9.779705274924563e-06,
758
+ "loss": 2.1531,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.1416843220338983,
763
+ "grad_norm": 3.828125,
764
+ "learning_rate": 9.773228160797187e-06,
765
+ "loss": 2.1426,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.1430084745762712,
770
+ "grad_norm": 3.796875,
771
+ "learning_rate": 9.766659409232918e-06,
772
+ "loss": 2.1032,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.14433262711864406,
777
+ "grad_norm": 4.09375,
778
+ "learning_rate": 9.759999146340031e-06,
779
+ "loss": 2.0202,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.14565677966101695,
784
+ "grad_norm": 4.59375,
785
+ "learning_rate": 9.753247499983649e-06,
786
+ "loss": 2.0955,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.14698093220338984,
791
+ "grad_norm": 4.03125,
792
+ "learning_rate": 9.7464045997833e-06,
793
+ "loss": 2.019,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.1483050847457627,
798
+ "grad_norm": 4.625,
799
+ "learning_rate": 9.739470577110417e-06,
800
+ "loss": 2.1751,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.1496292372881356,
805
+ "grad_norm": 4.125,
806
+ "learning_rate": 9.732445565085823e-06,
807
+ "loss": 2.0698,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.15095338983050846,
812
+ "grad_norm": 4.03125,
813
+ "learning_rate": 9.725329698577177e-06,
814
+ "loss": 2.1954,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.15227754237288135,
819
+ "grad_norm": 4.15625,
820
+ "learning_rate": 9.718123114196381e-06,
821
+ "loss": 2.1319,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.15360169491525424,
826
+ "grad_norm": 3.921875,
827
+ "learning_rate": 9.71082595029695e-06,
828
+ "loss": 2.0517,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.1549258474576271,
833
+ "grad_norm": 4.3125,
834
+ "learning_rate": 9.703438346971373e-06,
835
+ "loss": 2.243,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.15625,
840
+ "grad_norm": 4.15625,
841
+ "learning_rate": 9.69596044604841e-06,
842
+ "loss": 2.2454,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.1575741525423729,
847
+ "grad_norm": 4.0625,
848
+ "learning_rate": 9.688392391090374e-06,
849
+ "loss": 2.0891,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.15889830508474576,
854
+ "grad_norm": 4.3125,
855
+ "learning_rate": 9.680734327390374e-06,
856
+ "loss": 2.1075,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.16022245762711865,
861
+ "grad_norm": 4.125,
862
+ "learning_rate": 9.672986401969523e-06,
863
+ "loss": 2.0766,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.16154661016949154,
868
+ "grad_norm": 3.71875,
869
+ "learning_rate": 9.665148763574123e-06,
870
+ "loss": 1.9083,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.1628707627118644,
875
+ "grad_norm": 3.9375,
876
+ "learning_rate": 9.657221562672803e-06,
877
+ "loss": 1.9674,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.1641949152542373,
882
+ "grad_norm": 3.78125,
883
+ "learning_rate": 9.64920495145363e-06,
884
+ "loss": 2.2366,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.16551906779661016,
889
+ "grad_norm": 4.21875,
890
+ "learning_rate": 9.64109908382119e-06,
891
+ "loss": 2.1767,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.16684322033898305,
896
+ "grad_norm": 4.1875,
897
+ "learning_rate": 9.632904115393633e-06,
898
+ "loss": 2.0395,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.16816737288135594,
903
+ "grad_norm": 4.09375,
904
+ "learning_rate": 9.624620203499683e-06,
905
+ "loss": 2.2272,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.1694915254237288,
910
+ "grad_norm": 3.8125,
911
+ "learning_rate": 9.616247507175624e-06,
912
+ "loss": 2.094,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.1708156779661017,
917
+ "grad_norm": 3.78125,
918
+ "learning_rate": 9.607786187162234e-06,
919
+ "loss": 2.1253,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.1721398305084746,
924
+ "grad_norm": 4.40625,
925
+ "learning_rate": 9.599236405901715e-06,
926
+ "loss": 2.2173,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.17346398305084745,
931
+ "grad_norm": 3.90625,
932
+ "learning_rate": 9.590598327534563e-06,
933
+ "loss": 2.0337,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.17478813559322035,
938
+ "grad_norm": 4.0625,
939
+ "learning_rate": 9.581872117896423e-06,
940
+ "loss": 2.0791,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.1761122881355932,
945
+ "grad_norm": 3.859375,
946
+ "learning_rate": 9.573057944514897e-06,
947
+ "loss": 2.0358,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.1774364406779661,
952
+ "grad_norm": 4.28125,
953
+ "learning_rate": 9.56415597660634e-06,
954
+ "loss": 1.8235,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.178760593220339,
959
+ "grad_norm": 4.46875,
960
+ "learning_rate": 9.555166385072599e-06,
961
+ "loss": 2.154,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.18008474576271186,
966
+ "grad_norm": 3.953125,
967
+ "learning_rate": 9.546089342497743e-06,
968
+ "loss": 2.1079,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.18140889830508475,
973
+ "grad_norm": 3.84375,
974
+ "learning_rate": 9.536925023144742e-06,
975
+ "loss": 2.1117,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.18273305084745764,
980
+ "grad_norm": 4.0625,
981
+ "learning_rate": 9.527673602952123e-06,
982
+ "loss": 2.0338,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.1840572033898305,
987
+ "grad_norm": 4.09375,
988
+ "learning_rate": 9.518335259530594e-06,
989
+ "loss": 2.2235,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.1853813559322034,
994
+ "grad_norm": 4.84375,
995
+ "learning_rate": 9.508910172159635e-06,
996
+ "loss": 1.9275,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.18670550847457626,
1001
+ "grad_norm": 4.25,
1002
+ "learning_rate": 9.499398521784051e-06,
1003
+ "loss": 2.0549,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.18802966101694915,
1008
+ "grad_norm": 4.71875,
1009
+ "learning_rate": 9.489800491010507e-06,
1010
+ "loss": 1.9433,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.18935381355932204,
1015
+ "grad_norm": 3.96875,
1016
+ "learning_rate": 9.48011626410401e-06,
1017
+ "loss": 2.2499,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.1906779661016949,
1022
+ "grad_norm": 3.8125,
1023
+ "learning_rate": 9.470346026984387e-06,
1024
+ "loss": 2.1125,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.1920021186440678,
1029
+ "grad_norm": 4.34375,
1030
+ "learning_rate": 9.4604899672227e-06,
1031
+ "loss": 2.1017,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.1933262711864407,
1036
+ "grad_norm": 4.09375,
1037
+ "learning_rate": 9.450548274037652e-06,
1038
+ "loss": 2.038,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.19465042372881355,
1043
+ "grad_norm": 4.375,
1044
+ "learning_rate": 9.440521138291962e-06,
1045
+ "loss": 2.1801,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.19597457627118645,
1050
+ "grad_norm": 3.734375,
1051
+ "learning_rate": 9.430408752488687e-06,
1052
+ "loss": 2.1859,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.1972987288135593,
1057
+ "grad_norm": 4.34375,
1058
+ "learning_rate": 9.420211310767534e-06,
1059
+ "loss": 2.074,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.1986228813559322,
1064
+ "grad_norm": 4.8125,
1065
+ "learning_rate": 9.409929008901126e-06,
1066
+ "loss": 2.067,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.1999470338983051,
1071
+ "grad_norm": 3.671875,
1072
+ "learning_rate": 9.399562044291261e-06,
1073
+ "loss": 1.9712,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 0.20127118644067796,
1078
+ "grad_norm": 3.96875,
1079
+ "learning_rate": 9.389110615965102e-06,
1080
+ "loss": 2.0511,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 0.20259533898305085,
1085
+ "grad_norm": 4.0,
1086
+ "learning_rate": 9.378574924571362e-06,
1087
+ "loss": 2.0218,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 0.20391949152542374,
1092
+ "grad_norm": 4.09375,
1093
+ "learning_rate": 9.367955172376462e-06,
1094
+ "loss": 1.9664,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 0.2052436440677966,
1099
+ "grad_norm": 3.859375,
1100
+ "learning_rate": 9.35725156326063e-06,
1101
+ "loss": 2.0343,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 0.2065677966101695,
1106
+ "grad_norm": 3.984375,
1107
+ "learning_rate": 9.346464302714008e-06,
1108
+ "loss": 2.2163,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 0.20789194915254236,
1113
+ "grad_norm": 3.609375,
1114
+ "learning_rate": 9.335593597832686e-06,
1115
+ "loss": 2.2098,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 0.20921610169491525,
1120
+ "grad_norm": 3.90625,
1121
+ "learning_rate": 9.324639657314742e-06,
1122
+ "loss": 2.0961,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 0.21054025423728814,
1127
+ "grad_norm": 3.984375,
1128
+ "learning_rate": 9.313602691456224e-06,
1129
+ "loss": 2.1141,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 0.211864406779661,
1134
+ "grad_norm": 3.96875,
1135
+ "learning_rate": 9.302482912147126e-06,
1136
+ "loss": 2.0155,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 0.2131885593220339,
1141
+ "grad_norm": 3.953125,
1142
+ "learning_rate": 9.291280532867301e-06,
1143
+ "loss": 1.9736,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 0.2145127118644068,
1148
+ "grad_norm": 3.734375,
1149
+ "learning_rate": 9.279995768682383e-06,
1150
+ "loss": 2.0853,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 0.21583686440677965,
1155
+ "grad_norm": 4.125,
1156
+ "learning_rate": 9.268628836239646e-06,
1157
+ "loss": 2.1189,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 0.21716101694915255,
1162
+ "grad_norm": 3.796875,
1163
+ "learning_rate": 9.257179953763846e-06,
1164
+ "loss": 2.0597,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 0.2184851694915254,
1169
+ "grad_norm": 4.21875,
1170
+ "learning_rate": 9.245649341053033e-06,
1171
+ "loss": 2.0406,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 0.2198093220338983,
1176
+ "grad_norm": 3.96875,
1177
+ "learning_rate": 9.234037219474332e-06,
1178
+ "loss": 2.0314,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 0.2211334745762712,
1183
+ "grad_norm": 4.0,
1184
+ "learning_rate": 9.222343811959694e-06,
1185
+ "loss": 2.1392,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 0.22245762711864406,
1190
+ "grad_norm": 3.78125,
1191
+ "learning_rate": 9.21056934300161e-06,
1192
+ "loss": 2.0291,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 0.22378177966101695,
1197
+ "grad_norm": 3.78125,
1198
+ "learning_rate": 9.198714038648811e-06,
1199
+ "loss": 2.1251,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 0.22510593220338984,
1204
+ "grad_norm": 4.25,
1205
+ "learning_rate": 9.186778126501916e-06,
1206
+ "loss": 1.9912,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 0.2264300847457627,
1211
+ "grad_norm": 4.0,
1212
+ "learning_rate": 9.17476183570908e-06,
1213
+ "loss": 2.0754,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 0.2277542372881356,
1218
+ "grad_norm": 4.15625,
1219
+ "learning_rate": 9.162665396961573e-06,
1220
+ "loss": 2.0376,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 0.22907838983050846,
1225
+ "grad_norm": 4.15625,
1226
+ "learning_rate": 9.150489042489368e-06,
1227
+ "loss": 1.984,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 0.23040254237288135,
1232
+ "grad_norm": 3.984375,
1233
+ "learning_rate": 9.138233006056679e-06,
1234
+ "loss": 2.0155,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 0.23172669491525424,
1239
+ "grad_norm": 4.125,
1240
+ "learning_rate": 9.125897522957461e-06,
1241
+ "loss": 2.1034,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 0.2330508474576271,
1246
+ "grad_norm": 3.84375,
1247
+ "learning_rate": 9.113482830010918e-06,
1248
+ "loss": 2.1072,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 0.234375,
1253
+ "grad_norm": 5.28125,
1254
+ "learning_rate": 9.100989165556928e-06,
1255
+ "loss": 2.1256,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 0.2356991525423729,
1260
+ "grad_norm": 4.3125,
1261
+ "learning_rate": 9.088416769451485e-06,
1262
+ "loss": 2.0479,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 0.23702330508474576,
1267
+ "grad_norm": 4.0,
1268
+ "learning_rate": 9.075765883062093e-06,
1269
+ "loss": 2.075,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 0.23834745762711865,
1274
+ "grad_norm": 3.8125,
1275
+ "learning_rate": 9.063036749263127e-06,
1276
+ "loss": 1.9578,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 0.23967161016949154,
1281
+ "grad_norm": 3.796875,
1282
+ "learning_rate": 9.050229612431168e-06,
1283
+ "loss": 2.2268,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 0.2409957627118644,
1288
+ "grad_norm": 4.0625,
1289
+ "learning_rate": 9.037344718440321e-06,
1290
+ "loss": 2.2065,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 0.2423199152542373,
1295
+ "grad_norm": 4.75,
1296
+ "learning_rate": 9.02438231465749e-06,
1297
+ "loss": 1.9338,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 0.24364406779661016,
1302
+ "grad_norm": 4.0625,
1303
+ "learning_rate": 9.011342649937623e-06,
1304
+ "loss": 2.0992,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 0.24496822033898305,
1309
+ "grad_norm": 4.625,
1310
+ "learning_rate": 8.99822597461894e-06,
1311
+ "loss": 2.0273,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 0.24629237288135594,
1316
+ "grad_norm": 4.59375,
1317
+ "learning_rate": 8.985032540518133e-06,
1318
+ "loss": 2.0654,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 0.2476165254237288,
1323
+ "grad_norm": 4.34375,
1324
+ "learning_rate": 8.971762600925519e-06,
1325
+ "loss": 2.1202,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 0.2489406779661017,
1330
+ "grad_norm": 3.75,
1331
+ "learning_rate": 8.958416410600188e-06,
1332
+ "loss": 2.0589,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 0.2502648305084746,
1337
+ "grad_norm": 4.0625,
1338
+ "learning_rate": 8.944994225765104e-06,
1339
+ "loss": 1.9044,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 0.2515889830508475,
1344
+ "grad_norm": 4.375,
1345
+ "learning_rate": 8.931496304102192e-06,
1346
+ "loss": 2.0083,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 0.2529131355932203,
1351
+ "grad_norm": 3.859375,
1352
+ "learning_rate": 8.917922904747385e-06,
1353
+ "loss": 1.9487,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 0.2542372881355932,
1358
+ "grad_norm": 3.734375,
1359
+ "learning_rate": 8.904274288285657e-06,
1360
+ "loss": 1.9682,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 0.2555614406779661,
1365
+ "grad_norm": 4.21875,
1366
+ "learning_rate": 8.890550716746013e-06,
1367
+ "loss": 1.8554,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 0.256885593220339,
1372
+ "grad_norm": 3.921875,
1373
+ "learning_rate": 8.876752453596462e-06,
1374
+ "loss": 2.0785,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 0.2582097457627119,
1379
+ "grad_norm": 3.796875,
1380
+ "learning_rate": 8.862879763738962e-06,
1381
+ "loss": 2.0384,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 0.2595338983050847,
1386
+ "grad_norm": 3.828125,
1387
+ "learning_rate": 8.84893291350432e-06,
1388
+ "loss": 2.163,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 0.2608580508474576,
1393
+ "grad_norm": 4.125,
1394
+ "learning_rate": 8.834912170647102e-06,
1395
+ "loss": 2.0237,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 0.2621822033898305,
1400
+ "grad_norm": 4.0625,
1401
+ "learning_rate": 8.820817804340471e-06,
1402
+ "loss": 2.0215,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 0.2635063559322034,
1407
+ "grad_norm": 3.671875,
1408
+ "learning_rate": 8.806650085171036e-06,
1409
+ "loss": 2.0454,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 0.2648305084745763,
1414
+ "grad_norm": 3.78125,
1415
+ "learning_rate": 8.792409285133644e-06,
1416
+ "loss": 2.0006,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 0.2648305084745763,
1421
+ "eval_AskDoctor-Chinese_loss": 2.021162986755371,
1422
+ "eval_AskDoctor-Chinese_runtime": 16.0254,
1423
+ "eval_AskDoctor-Chinese_samples_per_second": 1.872,
1424
+ "eval_AskDoctor-Chinese_steps_per_second": 1.872,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.2661546610169492,
1429
+ "grad_norm": 3.921875,
1430
+ "learning_rate": 8.778095677626164e-06,
1431
+ "loss": 1.9454,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.267478813559322,
1436
+ "grad_norm": 3.765625,
1437
+ "learning_rate": 8.763709537444241e-06,
1438
+ "loss": 2.1055,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.2688029661016949,
1443
+ "grad_norm": 4.59375,
1444
+ "learning_rate": 8.749251140776016e-06,
1445
+ "loss": 1.9506,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.2701271186440678,
1450
+ "grad_norm": 3.9375,
1451
+ "learning_rate": 8.734720765196826e-06,
1452
+ "loss": 2.2382,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.2714512711864407,
1457
+ "grad_norm": 4.96875,
1458
+ "learning_rate": 8.720118689663872e-06,
1459
+ "loss": 1.9558,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.2727754237288136,
1464
+ "grad_norm": 3.84375,
1465
+ "learning_rate": 8.705445194510868e-06,
1466
+ "loss": 2.0589,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.2740995762711864,
1471
+ "grad_norm": 4.84375,
1472
+ "learning_rate": 8.690700561442658e-06,
1473
+ "loss": 1.8821,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.2754237288135593,
1478
+ "grad_norm": 3.84375,
1479
+ "learning_rate": 8.675885073529802e-06,
1480
+ "loss": 1.9863,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.2767478813559322,
1485
+ "grad_norm": 3.84375,
1486
+ "learning_rate": 8.660999015203152e-06,
1487
+ "loss": 2.0464,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.2780720338983051,
1492
+ "grad_norm": 3.9375,
1493
+ "learning_rate": 8.64604267224838e-06,
1494
+ "loss": 2.1284,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.279396186440678,
1499
+ "grad_norm": 4.21875,
1500
+ "learning_rate": 8.631016331800501e-06,
1501
+ "loss": 1.9782,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.2807203389830508,
1506
+ "grad_norm": 3.84375,
1507
+ "learning_rate": 8.615920282338355e-06,
1508
+ "loss": 2.0504,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.2820444915254237,
1513
+ "grad_norm": 3.859375,
1514
+ "learning_rate": 8.600754813679072e-06,
1515
+ "loss": 2.0384,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.2833686440677966,
1520
+ "grad_norm": 4.1875,
1521
+ "learning_rate": 8.585520216972503e-06,
1522
+ "loss": 2.0057,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.2846927966101695,
1527
+ "grad_norm": 3.765625,
1528
+ "learning_rate": 8.570216784695637e-06,
1529
+ "loss": 2.1141,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.2860169491525424,
1534
+ "grad_norm": 4.1875,
1535
+ "learning_rate": 8.55484481064698e-06,
1536
+ "loss": 1.9975,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.2873411016949153,
1541
+ "grad_norm": 4.03125,
1542
+ "learning_rate": 8.539404589940924e-06,
1543
+ "loss": 1.9758,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.2886652542372881,
1548
+ "grad_norm": 6.0625,
1549
+ "learning_rate": 8.52389641900206e-06,
1550
+ "loss": 1.8848,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.289989406779661,
1555
+ "grad_norm": 3.734375,
1556
+ "learning_rate": 8.50832059555952e-06,
1557
+ "loss": 2.09,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.2913135593220339,
1562
+ "grad_norm": 3.984375,
1563
+ "learning_rate": 8.492677418641231e-06,
1564
+ "loss": 1.824,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.2926377118644068,
1569
+ "grad_norm": 3.90625,
1570
+ "learning_rate": 8.476967188568187e-06,
1571
+ "loss": 2.1443,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.2939618644067797,
1576
+ "grad_norm": 3.796875,
1577
+ "learning_rate": 8.461190206948691e-06,
1578
+ "loss": 2.1238,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.2952860169491525,
1583
+ "grad_norm": 4.0625,
1584
+ "learning_rate": 8.445346776672546e-06,
1585
+ "loss": 2.1187,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.2966101694915254,
1590
+ "grad_norm": 3.65625,
1591
+ "learning_rate": 8.429437201905254e-06,
1592
+ "loss": 2.2054,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.2979343220338983,
1597
+ "grad_norm": 3.5,
1598
+ "learning_rate": 8.413461788082175e-06,
1599
+ "loss": 2.0788,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.2992584745762712,
1604
+ "grad_norm": 3.5625,
1605
+ "learning_rate": 8.39742084190266e-06,
1606
+ "loss": 2.1441,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.3005826271186441,
1611
+ "grad_norm": 7.3125,
1612
+ "learning_rate": 8.38131467132416e-06,
1613
+ "loss": 1.9429,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.3019067796610169,
1618
+ "grad_norm": 7.375,
1619
+ "learning_rate": 8.365143585556326e-06,
1620
+ "loss": 1.9466,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.3032309322033898,
1625
+ "grad_norm": 4.625,
1626
+ "learning_rate": 8.348907895055055e-06,
1627
+ "loss": 1.9793,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.3045550847457627,
1632
+ "grad_norm": 4.09375,
1633
+ "learning_rate": 8.332607911516545e-06,
1634
+ "loss": 2.0855,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.3058792372881356,
1639
+ "grad_norm": 4.125,
1640
+ "learning_rate": 8.316243947871306e-06,
1641
+ "loss": 2.1595,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.3072033898305085,
1646
+ "grad_norm": 3.953125,
1647
+ "learning_rate": 8.299816318278146e-06,
1648
+ "loss": 1.9467,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.3085275423728814,
1653
+ "grad_norm": 3.75,
1654
+ "learning_rate": 8.283325338118154e-06,
1655
+ "loss": 1.9687,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.3098516949152542,
1660
+ "grad_norm": 3.875,
1661
+ "learning_rate": 8.266771323988624e-06,
1662
+ "loss": 2.0397,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.3111758474576271,
1667
+ "grad_norm": 3.890625,
1668
+ "learning_rate": 8.250154593697002e-06,
1669
+ "loss": 2.1581,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.3125,
1674
+ "grad_norm": 3.640625,
1675
+ "learning_rate": 8.233475466254766e-06,
1676
+ "loss": 1.9687,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.3138241525423729,
1681
+ "grad_norm": 3.828125,
1682
+ "learning_rate": 8.216734261871305e-06,
1683
+ "loss": 2.081,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.3151483050847458,
1688
+ "grad_norm": 3.984375,
1689
+ "learning_rate": 8.199931301947782e-06,
1690
+ "loss": 1.9637,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.3164724576271186,
1695
+ "grad_norm": 6.96875,
1696
+ "learning_rate": 8.183066909070946e-06,
1697
+ "loss": 1.9271,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.3177966101694915,
1702
+ "grad_norm": 3.9375,
1703
+ "learning_rate": 8.16614140700696e-06,
1704
+ "loss": 1.9426,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.3191207627118644,
1709
+ "grad_norm": 4.03125,
1710
+ "learning_rate": 8.149155120695163e-06,
1711
+ "loss": 1.8951,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.3204449152542373,
1716
+ "grad_norm": 3.84375,
1717
+ "learning_rate": 8.132108376241849e-06,
1718
+ "loss": 2.1779,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.3217690677966102,
1723
+ "grad_norm": 3.921875,
1724
+ "learning_rate": 8.115001500914e-06,
1725
+ "loss": 2.1942,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.3230932203389831,
1730
+ "grad_norm": 3.90625,
1731
+ "learning_rate": 8.097834823133002e-06,
1732
+ "loss": 1.9011,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.3244173728813559,
1737
+ "grad_norm": 4.15625,
1738
+ "learning_rate": 8.08060867246834e-06,
1739
+ "loss": 1.9409,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.3257415254237288,
1744
+ "grad_norm": 4.96875,
1745
+ "learning_rate": 8.063323379631274e-06,
1746
+ "loss": 1.9138,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.3270656779661017,
1751
+ "grad_norm": 3.875,
1752
+ "learning_rate": 8.045979276468486e-06,
1753
+ "loss": 2.182,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.3283898305084746,
1758
+ "grad_norm": 3.90625,
1759
+ "learning_rate": 8.028576695955711e-06,
1760
+ "loss": 2.0034,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.3297139830508475,
1765
+ "grad_norm": 3.6875,
1766
+ "learning_rate": 8.011115972191347e-06,
1767
+ "loss": 2.1779,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.3310381355932203,
1772
+ "grad_norm": 5.25,
1773
+ "learning_rate": 7.993597440390035e-06,
1774
+ "loss": 1.8994,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.3323622881355932,
1779
+ "grad_norm": 3.765625,
1780
+ "learning_rate": 7.976021436876232e-06,
1781
+ "loss": 2.0865,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.3336864406779661,
1786
+ "grad_norm": 3.90625,
1787
+ "learning_rate": 7.958388299077739e-06,
1788
+ "loss": 2.1092,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.335010593220339,
1793
+ "grad_norm": 4.0,
1794
+ "learning_rate": 7.940698365519246e-06,
1795
+ "loss": 2.0966,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.3363347457627119,
1800
+ "grad_norm": 3.625,
1801
+ "learning_rate": 7.92295197581581e-06,
1802
+ "loss": 2.0216,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.3376588983050847,
1807
+ "grad_norm": 3.796875,
1808
+ "learning_rate": 7.905149470666348e-06,
1809
+ "loss": 2.036,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.3389830508474576,
1814
+ "grad_norm": 4.625,
1815
+ "learning_rate": 7.887291191847098e-06,
1816
+ "loss": 2.0037,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.3403072033898305,
1821
+ "grad_norm": 4.0625,
1822
+ "learning_rate": 7.869377482205042e-06,
1823
+ "loss": 2.0473,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.3416313559322034,
1828
+ "grad_norm": 4.125,
1829
+ "learning_rate": 7.851408685651342e-06,
1830
+ "loss": 2.0279,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.3429555084745763,
1835
+ "grad_norm": 3.9375,
1836
+ "learning_rate": 7.833385147154733e-06,
1837
+ "loss": 2.1209,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.3442796610169492,
1842
+ "grad_norm": 3.96875,
1843
+ "learning_rate": 7.815307212734888e-06,
1844
+ "loss": 2.0669,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.345603813559322,
1849
+ "grad_norm": 3.71875,
1850
+ "learning_rate": 7.797175229455793e-06,
1851
+ "loss": 2.033,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.3469279661016949,
1856
+ "grad_norm": 4.46875,
1857
+ "learning_rate": 7.778989545419068e-06,
1858
+ "loss": 2.0184,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.3482521186440678,
1863
+ "grad_norm": 3.765625,
1864
+ "learning_rate": 7.7607505097573e-06,
1865
+ "loss": 2.2567,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.3495762711864407,
1870
+ "grad_norm": 3.6875,
1871
+ "learning_rate": 7.742458472627321e-06,
1872
+ "loss": 2.0145,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.3509004237288136,
1877
+ "grad_norm": 3.953125,
1878
+ "learning_rate": 7.724113785203506e-06,
1879
+ "loss": 1.94,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.3522245762711864,
1884
+ "grad_norm": 3.78125,
1885
+ "learning_rate": 7.705716799671019e-06,
1886
+ "loss": 2.0266,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.3535487288135593,
1891
+ "grad_norm": 3.953125,
1892
+ "learning_rate": 7.687267869219052e-06,
1893
+ "loss": 1.9502,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.3548728813559322,
1898
+ "grad_norm": 3.953125,
1899
+ "learning_rate": 7.668767348034044e-06,
1900
+ "loss": 2.1102,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.3561970338983051,
1905
+ "grad_norm": 3.90625,
1906
+ "learning_rate": 7.650215591292888e-06,
1907
+ "loss": 1.8979,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.357521186440678,
1912
+ "grad_norm": 4.125,
1913
+ "learning_rate": 7.631612955156111e-06,
1914
+ "loss": 1.9134,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.3588453389830508,
1919
+ "grad_norm": 3.84375,
1920
+ "learning_rate": 7.6129597967610244e-06,
1921
+ "loss": 2.0089,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.3601694915254237,
1926
+ "grad_norm": 3.890625,
1927
+ "learning_rate": 7.594256474214883e-06,
1928
+ "loss": 1.9536,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.3614936440677966,
1933
+ "grad_norm": 3.984375,
1934
+ "learning_rate": 7.5755033465880024e-06,
1935
+ "loss": 2.0965,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.3628177966101695,
1940
+ "grad_norm": 4.28125,
1941
+ "learning_rate": 7.556700773906866e-06,
1942
+ "loss": 2.0323,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.3641419491525424,
1947
+ "grad_norm": 3.8125,
1948
+ "learning_rate": 7.537849117147212e-06,
1949
+ "loss": 2.0372,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.3654661016949153,
1954
+ "grad_norm": 3.640625,
1955
+ "learning_rate": 7.5189487382271095e-06,
1956
+ "loss": 2.0669,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.3667902542372881,
1961
+ "grad_norm": 3.703125,
1962
+ "learning_rate": 7.500000000000001e-06,
1963
+ "loss": 1.9949,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.368114406779661,
1968
+ "grad_norm": 3.703125,
1969
+ "learning_rate": 7.481003266247745e-06,
1970
+ "loss": 2.1448,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.3694385593220339,
1975
+ "grad_norm": 3.90625,
1976
+ "learning_rate": 7.461958901673625e-06,
1977
+ "loss": 2.0343,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.3707627118644068,
1982
+ "grad_norm": 4.25,
1983
+ "learning_rate": 7.4428672718953535e-06,
1984
+ "loss": 2.0603,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.3720868644067797,
1989
+ "grad_norm": 3.640625,
1990
+ "learning_rate": 7.4237287434380485e-06,
1991
+ "loss": 1.9779,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.3734110169491525,
1996
+ "grad_norm": 3.78125,
1997
+ "learning_rate": 7.404543683727201e-06,
1998
+ "loss": 2.1302,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.3747351694915254,
2003
+ "grad_norm": 6.15625,
2004
+ "learning_rate": 7.385312461081616e-06,
2005
+ "loss": 1.9677,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.3760593220338983,
2010
+ "grad_norm": 7.6875,
2011
+ "learning_rate": 7.366035444706346e-06,
2012
+ "loss": 1.969,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.3773834745762712,
2017
+ "grad_norm": 3.953125,
2018
+ "learning_rate": 7.346713004685602e-06,
2019
+ "loss": 2.0783,
2020
+ "step": 285
2021
+ },
2022
+ {
2023
+ "epoch": 0.3787076271186441,
2024
+ "grad_norm": 3.875,
2025
+ "learning_rate": 7.3273455119756445e-06,
2026
+ "loss": 2.134,
2027
+ "step": 286
2028
+ },
2029
+ {
2030
+ "epoch": 0.3800317796610169,
2031
+ "grad_norm": 4.125,
2032
+ "learning_rate": 7.307933338397667e-06,
2033
+ "loss": 2.0337,
2034
+ "step": 287
2035
+ },
2036
+ {
2037
+ "epoch": 0.3813559322033898,
2038
+ "grad_norm": 3.59375,
2039
+ "learning_rate": 7.288476856630656e-06,
2040
+ "loss": 2.2021,
2041
+ "step": 288
2042
+ },
2043
+ {
2044
+ "epoch": 0.3826800847457627,
2045
+ "grad_norm": 3.765625,
2046
+ "learning_rate": 7.268976440204236e-06,
2047
+ "loss": 2.0299,
2048
+ "step": 289
2049
+ },
2050
+ {
2051
+ "epoch": 0.3840042372881356,
2052
+ "grad_norm": 4.15625,
2053
+ "learning_rate": 7.249432463491498e-06,
2054
+ "loss": 1.9574,
2055
+ "step": 290
2056
+ },
2057
+ {
2058
+ "epoch": 0.3853283898305085,
2059
+ "grad_norm": 3.734375,
2060
+ "learning_rate": 7.229845301701811e-06,
2061
+ "loss": 2.2027,
2062
+ "step": 291
2063
+ },
2064
+ {
2065
+ "epoch": 0.3866525423728814,
2066
+ "grad_norm": 3.578125,
2067
+ "learning_rate": 7.2102153308736225e-06,
2068
+ "loss": 2.1389,
2069
+ "step": 292
2070
+ },
2071
+ {
2072
+ "epoch": 0.3879766949152542,
2073
+ "grad_norm": 3.796875,
2074
+ "learning_rate": 7.190542927867234e-06,
2075
+ "loss": 1.8233,
2076
+ "step": 293
2077
+ },
2078
+ {
2079
+ "epoch": 0.3893008474576271,
2080
+ "grad_norm": 3.984375,
2081
+ "learning_rate": 7.1708284703575734e-06,
2082
+ "loss": 1.9075,
2083
+ "step": 294
2084
+ },
2085
+ {
2086
+ "epoch": 0.390625,
2087
+ "grad_norm": 4.5625,
2088
+ "learning_rate": 7.1510723368269376e-06,
2089
+ "loss": 1.8944,
2090
+ "step": 295
2091
+ },
2092
+ {
2093
+ "epoch": 0.3919491525423729,
2094
+ "grad_norm": 4.0,
2095
+ "learning_rate": 7.131274906557725e-06,
2096
+ "loss": 2.1448,
2097
+ "step": 296
2098
+ },
2099
+ {
2100
+ "epoch": 0.3932733050847458,
2101
+ "grad_norm": 4.34375,
2102
+ "learning_rate": 7.111436559625162e-06,
2103
+ "loss": 2.0403,
2104
+ "step": 297
2105
+ },
2106
+ {
2107
+ "epoch": 0.3945974576271186,
2108
+ "grad_norm": 3.90625,
2109
+ "learning_rate": 7.091557676890001e-06,
2110
+ "loss": 1.982,
2111
+ "step": 298
2112
+ },
2113
+ {
2114
+ "epoch": 0.3959216101694915,
2115
+ "grad_norm": 4.5,
2116
+ "learning_rate": 7.0716386399912075e-06,
2117
+ "loss": 2.1055,
2118
+ "step": 299
2119
+ },
2120
+ {
2121
+ "epoch": 0.3972457627118644,
2122
+ "grad_norm": 3.515625,
2123
+ "learning_rate": 7.051679831338638e-06,
2124
+ "loss": 1.8751,
2125
+ "step": 300
2126
+ },
2127
+ {
2128
+ "epoch": 0.3985699152542373,
2129
+ "grad_norm": 3.765625,
2130
+ "learning_rate": 7.03168163410569e-06,
2131
+ "loss": 2.0518,
2132
+ "step": 301
2133
+ },
2134
+ {
2135
+ "epoch": 0.3998940677966102,
2136
+ "grad_norm": 3.8125,
2137
+ "learning_rate": 7.0116444322219575e-06,
2138
+ "loss": 1.9739,
2139
+ "step": 302
2140
+ },
2141
+ {
2142
+ "epoch": 0.4012182203389831,
2143
+ "grad_norm": 3.578125,
2144
+ "learning_rate": 6.991568610365851e-06,
2145
+ "loss": 2.0927,
2146
+ "step": 303
2147
+ },
2148
+ {
2149
+ "epoch": 0.4025423728813559,
2150
+ "grad_norm": 4.4375,
2151
+ "learning_rate": 6.971454553957216e-06,
2152
+ "loss": 2.0478,
2153
+ "step": 304
2154
+ },
2155
+ {
2156
+ "epoch": 0.4038665254237288,
2157
+ "grad_norm": 4.15625,
2158
+ "learning_rate": 6.95130264914993e-06,
2159
+ "loss": 2.0242,
2160
+ "step": 305
2161
+ },
2162
+ {
2163
+ "epoch": 0.4051906779661017,
2164
+ "grad_norm": 3.65625,
2165
+ "learning_rate": 6.931113282824498e-06,
2166
+ "loss": 2.1597,
2167
+ "step": 306
2168
+ },
2169
+ {
2170
+ "epoch": 0.4065148305084746,
2171
+ "grad_norm": 3.734375,
2172
+ "learning_rate": 6.910886842580612e-06,
2173
+ "loss": 1.9689,
2174
+ "step": 307
2175
+ },
2176
+ {
2177
+ "epoch": 0.4078389830508475,
2178
+ "grad_norm": 3.640625,
2179
+ "learning_rate": 6.890623716729724e-06,
2180
+ "loss": 2.1267,
2181
+ "step": 308
2182
+ },
2183
+ {
2184
+ "epoch": 0.4091631355932203,
2185
+ "grad_norm": 3.796875,
2186
+ "learning_rate": 6.870324294287578e-06,
2187
+ "loss": 2.0548,
2188
+ "step": 309
2189
+ },
2190
+ {
2191
+ "epoch": 0.4104872881355932,
2192
+ "grad_norm": 3.703125,
2193
+ "learning_rate": 6.8499889649667516e-06,
2194
+ "loss": 2.2051,
2195
+ "step": 310
2196
+ },
2197
+ {
2198
+ "epoch": 0.4118114406779661,
2199
+ "grad_norm": 3.765625,
2200
+ "learning_rate": 6.829618119169169e-06,
2201
+ "loss": 1.9724,
2202
+ "step": 311
2203
+ },
2204
+ {
2205
+ "epoch": 0.413135593220339,
2206
+ "grad_norm": 4.09375,
2207
+ "learning_rate": 6.809212147978605e-06,
2208
+ "loss": 2.0979,
2209
+ "step": 312
2210
+ },
2211
+ {
2212
+ "epoch": 0.4144597457627119,
2213
+ "grad_norm": 3.953125,
2214
+ "learning_rate": 6.788771443153183e-06,
2215
+ "loss": 2.1663,
2216
+ "step": 313
2217
+ },
2218
+ {
2219
+ "epoch": 0.4157838983050847,
2220
+ "grad_norm": 4.03125,
2221
+ "learning_rate": 6.768296397117848e-06,
2222
+ "loss": 1.9478,
2223
+ "step": 314
2224
+ },
2225
+ {
2226
+ "epoch": 0.4171080508474576,
2227
+ "grad_norm": 4.03125,
2228
+ "learning_rate": 6.7477874029568345e-06,
2229
+ "loss": 2.0767,
2230
+ "step": 315
2231
+ },
2232
+ {
2233
+ "epoch": 0.4184322033898305,
2234
+ "grad_norm": 5.875,
2235
+ "learning_rate": 6.7272448544061184e-06,
2236
+ "loss": 2.0509,
2237
+ "step": 316
2238
+ },
2239
+ {
2240
+ "epoch": 0.4197563559322034,
2241
+ "grad_norm": 3.921875,
2242
+ "learning_rate": 6.706669145845863e-06,
2243
+ "loss": 2.0612,
2244
+ "step": 317
2245
+ },
2246
+ {
2247
+ "epoch": 0.4210805084745763,
2248
+ "grad_norm": 5.09375,
2249
+ "learning_rate": 6.686060672292847e-06,
2250
+ "loss": 1.9404,
2251
+ "step": 318
2252
+ },
2253
+ {
2254
+ "epoch": 0.4224046610169492,
2255
+ "grad_norm": 4.0,
2256
+ "learning_rate": 6.6654198293928695e-06,
2257
+ "loss": 2.0939,
2258
+ "step": 319
2259
+ },
2260
+ {
2261
+ "epoch": 0.423728813559322,
2262
+ "grad_norm": 4.84375,
2263
+ "learning_rate": 6.6447470134131685e-06,
2264
+ "loss": 1.9003,
2265
+ "step": 320
2266
+ },
2267
+ {
2268
+ "epoch": 0.4250529661016949,
2269
+ "grad_norm": 4.0,
2270
+ "learning_rate": 6.624042621234814e-06,
2271
+ "loss": 2.1884,
2272
+ "step": 321
2273
+ },
2274
+ {
2275
+ "epoch": 0.4263771186440678,
2276
+ "grad_norm": 3.734375,
2277
+ "learning_rate": 6.603307050345069e-06,
2278
+ "loss": 1.9816,
2279
+ "step": 322
2280
+ },
2281
+ {
2282
+ "epoch": 0.4277012711864407,
2283
+ "grad_norm": 3.828125,
2284
+ "learning_rate": 6.5825406988297815e-06,
2285
+ "loss": 1.9909,
2286
+ "step": 323
2287
+ },
2288
+ {
2289
+ "epoch": 0.4290254237288136,
2290
+ "grad_norm": 4.03125,
2291
+ "learning_rate": 6.561743965365732e-06,
2292
+ "loss": 2.1602,
2293
+ "step": 324
2294
+ },
2295
+ {
2296
+ "epoch": 0.4303495762711864,
2297
+ "grad_norm": 3.625,
2298
+ "learning_rate": 6.540917249212976e-06,
2299
+ "loss": 2.2546,
2300
+ "step": 325
2301
+ },
2302
+ {
2303
+ "epoch": 0.4316737288135593,
2304
+ "grad_norm": 3.734375,
2305
+ "learning_rate": 6.520060950207186e-06,
2306
+ "loss": 2.1109,
2307
+ "step": 326
2308
+ },
2309
+ {
2310
+ "epoch": 0.4329978813559322,
2311
+ "grad_norm": 3.6875,
2312
+ "learning_rate": 6.4991754687519695e-06,
2313
+ "loss": 1.9424,
2314
+ "step": 327
2315
+ },
2316
+ {
2317
+ "epoch": 0.4343220338983051,
2318
+ "grad_norm": 4.03125,
2319
+ "learning_rate": 6.478261205811188e-06,
2320
+ "loss": 1.9637,
2321
+ "step": 328
2322
+ },
2323
+ {
2324
+ "epoch": 0.435646186440678,
2325
+ "grad_norm": 4.1875,
2326
+ "learning_rate": 6.457318562901257e-06,
2327
+ "loss": 1.9564,
2328
+ "step": 329
2329
+ },
2330
+ {
2331
+ "epoch": 0.4369703389830508,
2332
+ "grad_norm": 3.734375,
2333
+ "learning_rate": 6.43634794208343e-06,
2334
+ "loss": 2.1901,
2335
+ "step": 330
2336
+ },
2337
+ {
2338
+ "epoch": 0.4382944915254237,
2339
+ "grad_norm": 4.0625,
2340
+ "learning_rate": 6.415349745956093e-06,
2341
+ "loss": 1.8634,
2342
+ "step": 331
2343
+ },
2344
+ {
2345
+ "epoch": 0.4396186440677966,
2346
+ "grad_norm": 4.1875,
2347
+ "learning_rate": 6.394324377647028e-06,
2348
+ "loss": 1.9514,
2349
+ "step": 332
2350
+ },
2351
+ {
2352
+ "epoch": 0.4409427966101695,
2353
+ "grad_norm": 3.953125,
2354
+ "learning_rate": 6.373272240805668e-06,
2355
+ "loss": 1.8502,
2356
+ "step": 333
2357
+ },
2358
+ {
2359
+ "epoch": 0.4422669491525424,
2360
+ "grad_norm": 3.78125,
2361
+ "learning_rate": 6.35219373959536e-06,
2362
+ "loss": 1.9593,
2363
+ "step": 334
2364
+ },
2365
+ {
2366
+ "epoch": 0.4435911016949153,
2367
+ "grad_norm": 3.765625,
2368
+ "learning_rate": 6.331089278685599e-06,
2369
+ "loss": 2.057,
2370
+ "step": 335
2371
+ },
2372
+ {
2373
+ "epoch": 0.4449152542372881,
2374
+ "grad_norm": 4.84375,
2375
+ "learning_rate": 6.30995926324426e-06,
2376
+ "loss": 1.9964,
2377
+ "step": 336
2378
+ },
2379
+ {
2380
+ "epoch": 0.446239406779661,
2381
+ "grad_norm": 3.796875,
2382
+ "learning_rate": 6.2888040989298136e-06,
2383
+ "loss": 2.2322,
2384
+ "step": 337
2385
+ },
2386
+ {
2387
+ "epoch": 0.4475635593220339,
2388
+ "grad_norm": 3.84375,
2389
+ "learning_rate": 6.267624191883551e-06,
2390
+ "loss": 1.9032,
2391
+ "step": 338
2392
+ },
2393
+ {
2394
+ "epoch": 0.4488877118644068,
2395
+ "grad_norm": 3.90625,
2396
+ "learning_rate": 6.246419948721777e-06,
2397
+ "loss": 2.026,
2398
+ "step": 339
2399
+ },
2400
+ {
2401
+ "epoch": 0.4502118644067797,
2402
+ "grad_norm": 3.625,
2403
+ "learning_rate": 6.2251917765280056e-06,
2404
+ "loss": 2.1106,
2405
+ "step": 340
2406
+ },
2407
+ {
2408
+ "epoch": 0.4515360169491525,
2409
+ "grad_norm": 3.859375,
2410
+ "learning_rate": 6.203940082845144e-06,
2411
+ "loss": 1.8843,
2412
+ "step": 341
2413
+ },
2414
+ {
2415
+ "epoch": 0.4528601694915254,
2416
+ "grad_norm": 4.0,
2417
+ "learning_rate": 6.182665275667674e-06,
2418
+ "loss": 1.8529,
2419
+ "step": 342
2420
+ },
2421
+ {
2422
+ "epoch": 0.4541843220338983,
2423
+ "grad_norm": 3.859375,
2424
+ "learning_rate": 6.161367763433812e-06,
2425
+ "loss": 2.0598,
2426
+ "step": 343
2427
+ },
2428
+ {
2429
+ "epoch": 0.4555084745762712,
2430
+ "grad_norm": 3.859375,
2431
+ "learning_rate": 6.140047955017672e-06,
2432
+ "loss": 2.0318,
2433
+ "step": 344
2434
+ },
2435
+ {
2436
+ "epoch": 0.4568326271186441,
2437
+ "grad_norm": 4.09375,
2438
+ "learning_rate": 6.118706259721414e-06,
2439
+ "loss": 2.0361,
2440
+ "step": 345
2441
+ },
2442
+ {
2443
+ "epoch": 0.4581567796610169,
2444
+ "grad_norm": 3.984375,
2445
+ "learning_rate": 6.097343087267386e-06,
2446
+ "loss": 2.0142,
2447
+ "step": 346
2448
+ },
2449
+ {
2450
+ "epoch": 0.4594809322033898,
2451
+ "grad_norm": 4.09375,
2452
+ "learning_rate": 6.075958847790262e-06,
2453
+ "loss": 2.0354,
2454
+ "step": 347
2455
+ },
2456
+ {
2457
+ "epoch": 0.4608050847457627,
2458
+ "grad_norm": 3.765625,
2459
+ "learning_rate": 6.054553951829163e-06,
2460
+ "loss": 1.9838,
2461
+ "step": 348
2462
+ },
2463
+ {
2464
+ "epoch": 0.4621292372881356,
2465
+ "grad_norm": 4.03125,
2466
+ "learning_rate": 6.033128810319779e-06,
2467
+ "loss": 1.9332,
2468
+ "step": 349
2469
+ },
2470
+ {
2471
+ "epoch": 0.4634533898305085,
2472
+ "grad_norm": 3.75,
2473
+ "learning_rate": 6.011683834586474e-06,
2474
+ "loss": 2.0284,
2475
+ "step": 350
2476
+ },
2477
+ {
2478
+ "epoch": 0.4647775423728814,
2479
+ "grad_norm": 3.703125,
2480
+ "learning_rate": 5.9902194363344014e-06,
2481
+ "loss": 1.9933,
2482
+ "step": 351
2483
+ },
2484
+ {
2485
+ "epoch": 0.4661016949152542,
2486
+ "grad_norm": 3.96875,
2487
+ "learning_rate": 5.968736027641584e-06,
2488
+ "loss": 1.9212,
2489
+ "step": 352
2490
+ },
2491
+ {
2492
+ "epoch": 0.4674258474576271,
2493
+ "grad_norm": 4.3125,
2494
+ "learning_rate": 5.947234020951015e-06,
2495
+ "loss": 1.9715,
2496
+ "step": 353
2497
+ },
2498
+ {
2499
+ "epoch": 0.46875,
2500
+ "grad_norm": 4.0625,
2501
+ "learning_rate": 5.925713829062737e-06,
2502
+ "loss": 2.116,
2503
+ "step": 354
2504
+ },
2505
+ {
2506
+ "epoch": 0.4700741525423729,
2507
+ "grad_norm": 4.0,
2508
+ "learning_rate": 5.904175865125915e-06,
2509
+ "loss": 1.8785,
2510
+ "step": 355
2511
+ },
2512
+ {
2513
+ "epoch": 0.4713983050847458,
2514
+ "grad_norm": 3.8125,
2515
+ "learning_rate": 5.882620542630901e-06,
2516
+ "loss": 2.1109,
2517
+ "step": 356
2518
+ },
2519
+ {
2520
+ "epoch": 0.4727224576271186,
2521
+ "grad_norm": 4.0625,
2522
+ "learning_rate": 5.86104827540131e-06,
2523
+ "loss": 2.046,
2524
+ "step": 357
2525
+ },
2526
+ {
2527
+ "epoch": 0.4740466101694915,
2528
+ "grad_norm": 3.890625,
2529
+ "learning_rate": 5.839459477586056e-06,
2530
+ "loss": 1.931,
2531
+ "step": 358
2532
+ },
2533
+ {
2534
+ "epoch": 0.4753707627118644,
2535
+ "grad_norm": 4.0,
2536
+ "learning_rate": 5.817854563651415e-06,
2537
+ "loss": 1.9138,
2538
+ "step": 359
2539
+ },
2540
+ {
2541
+ "epoch": 0.4766949152542373,
2542
+ "grad_norm": 3.90625,
2543
+ "learning_rate": 5.796233948373061e-06,
2544
+ "loss": 2.0626,
2545
+ "step": 360
2546
+ },
2547
+ {
2548
+ "epoch": 0.4780190677966102,
2549
+ "grad_norm": 3.6875,
2550
+ "learning_rate": 5.7745980468281116e-06,
2551
+ "loss": 1.9901,
2552
+ "step": 361
2553
+ },
2554
+ {
2555
+ "epoch": 0.4793432203389831,
2556
+ "grad_norm": 3.515625,
2557
+ "learning_rate": 5.752947274387147e-06,
2558
+ "loss": 2.1562,
2559
+ "step": 362
2560
+ },
2561
+ {
2562
+ "epoch": 0.4806673728813559,
2563
+ "grad_norm": 4.03125,
2564
+ "learning_rate": 5.731282046706247e-06,
2565
+ "loss": 1.9464,
2566
+ "step": 363
2567
+ },
2568
+ {
2569
+ "epoch": 0.4819915254237288,
2570
+ "grad_norm": 3.875,
2571
+ "learning_rate": 5.709602779718999e-06,
2572
+ "loss": 1.9471,
2573
+ "step": 364
2574
+ },
2575
+ {
2576
+ "epoch": 0.4833156779661017,
2577
+ "grad_norm": 3.640625,
2578
+ "learning_rate": 5.687909889628529e-06,
2579
+ "loss": 1.9786,
2580
+ "step": 365
2581
+ },
2582
+ {
2583
+ "epoch": 0.4846398305084746,
2584
+ "grad_norm": 3.796875,
2585
+ "learning_rate": 5.666203792899496e-06,
2586
+ "loss": 2.0612,
2587
+ "step": 366
2588
+ },
2589
+ {
2590
+ "epoch": 0.4859639830508475,
2591
+ "grad_norm": 3.84375,
2592
+ "learning_rate": 5.644484906250104e-06,
2593
+ "loss": 1.9507,
2594
+ "step": 367
2595
+ },
2596
+ {
2597
+ "epoch": 0.4872881355932203,
2598
+ "grad_norm": 3.984375,
2599
+ "learning_rate": 5.622753646644102e-06,
2600
+ "loss": 1.8828,
2601
+ "step": 368
2602
+ },
2603
+ {
2604
+ "epoch": 0.4886122881355932,
2605
+ "grad_norm": 3.671875,
2606
+ "learning_rate": 5.601010431282777e-06,
2607
+ "loss": 1.9527,
2608
+ "step": 369
2609
+ },
2610
+ {
2611
+ "epoch": 0.4899364406779661,
2612
+ "grad_norm": 3.90625,
2613
+ "learning_rate": 5.579255677596944e-06,
2614
+ "loss": 2.0724,
2615
+ "step": 370
2616
+ },
2617
+ {
2618
+ "epoch": 0.491260593220339,
2619
+ "grad_norm": 3.890625,
2620
+ "learning_rate": 5.557489803238934e-06,
2621
+ "loss": 1.9829,
2622
+ "step": 371
2623
+ },
2624
+ {
2625
+ "epoch": 0.4925847457627119,
2626
+ "grad_norm": 3.75,
2627
+ "learning_rate": 5.535713226074576e-06,
2628
+ "loss": 1.9163,
2629
+ "step": 372
2630
+ },
2631
+ {
2632
+ "epoch": 0.4939088983050847,
2633
+ "grad_norm": 3.90625,
2634
+ "learning_rate": 5.513926364175172e-06,
2635
+ "loss": 2.0671,
2636
+ "step": 373
2637
+ },
2638
+ {
2639
+ "epoch": 0.4952330508474576,
2640
+ "grad_norm": 3.75,
2641
+ "learning_rate": 5.492129635809473e-06,
2642
+ "loss": 2.0903,
2643
+ "step": 374
2644
+ },
2645
+ {
2646
+ "epoch": 0.4965572033898305,
2647
+ "grad_norm": 4.125,
2648
+ "learning_rate": 5.47032345943565e-06,
2649
+ "loss": 2.0251,
2650
+ "step": 375
2651
+ },
2652
+ {
2653
+ "epoch": 0.4978813559322034,
2654
+ "grad_norm": 3.65625,
2655
+ "learning_rate": 5.4485082536932564e-06,
2656
+ "loss": 2.0114,
2657
+ "step": 376
2658
+ },
2659
+ {
2660
+ "epoch": 0.4992055084745763,
2661
+ "grad_norm": 3.734375,
2662
+ "learning_rate": 5.426684437395196e-06,
2663
+ "loss": 1.9574,
2664
+ "step": 377
2665
+ },
2666
+ {
2667
+ "epoch": 0.5005296610169492,
2668
+ "grad_norm": 4.25,
2669
+ "learning_rate": 5.404852429519678e-06,
2670
+ "loss": 1.9259,
2671
+ "step": 378
2672
+ },
2673
+ {
2674
+ "epoch": 0.501853813559322,
2675
+ "grad_norm": 4.03125,
2676
+ "learning_rate": 5.383012649202173e-06,
2677
+ "loss": 1.9558,
2678
+ "step": 379
2679
+ },
2680
+ {
2681
+ "epoch": 0.503177966101695,
2682
+ "grad_norm": 3.96875,
2683
+ "learning_rate": 5.361165515727374e-06,
2684
+ "loss": 2.0474,
2685
+ "step": 380
2686
+ },
2687
+ {
2688
+ "epoch": 0.5045021186440678,
2689
+ "grad_norm": 3.890625,
2690
+ "learning_rate": 5.3393114485211394e-06,
2691
+ "loss": 2.0343,
2692
+ "step": 381
2693
+ },
2694
+ {
2695
+ "epoch": 0.5058262711864406,
2696
+ "grad_norm": 3.84375,
2697
+ "learning_rate": 5.31745086714244e-06,
2698
+ "loss": 1.9331,
2699
+ "step": 382
2700
+ },
2701
+ {
2702
+ "epoch": 0.5071504237288136,
2703
+ "grad_norm": 4.0,
2704
+ "learning_rate": 5.295584191275308e-06,
2705
+ "loss": 1.8745,
2706
+ "step": 383
2707
+ },
2708
+ {
2709
+ "epoch": 0.5084745762711864,
2710
+ "grad_norm": 3.8125,
2711
+ "learning_rate": 5.273711840720783e-06,
2712
+ "loss": 1.9222,
2713
+ "step": 384
2714
+ },
2715
+ {
2716
+ "epoch": 0.5097987288135594,
2717
+ "grad_norm": 4.0,
2718
+ "learning_rate": 5.251834235388845e-06,
2719
+ "loss": 2.1023,
2720
+ "step": 385
2721
+ },
2722
+ {
2723
+ "epoch": 0.5111228813559322,
2724
+ "grad_norm": 3.96875,
2725
+ "learning_rate": 5.229951795290353e-06,
2726
+ "loss": 1.9507,
2727
+ "step": 386
2728
+ },
2729
+ {
2730
+ "epoch": 0.512447033898305,
2731
+ "grad_norm": 3.75,
2732
+ "learning_rate": 5.208064940528994e-06,
2733
+ "loss": 2.0536,
2734
+ "step": 387
2735
+ },
2736
+ {
2737
+ "epoch": 0.513771186440678,
2738
+ "grad_norm": 3.6875,
2739
+ "learning_rate": 5.1861740912932e-06,
2740
+ "loss": 2.0979,
2741
+ "step": 388
2742
+ },
2743
+ {
2744
+ "epoch": 0.5150953389830508,
2745
+ "grad_norm": 3.75,
2746
+ "learning_rate": 5.164279667848094e-06,
2747
+ "loss": 2.0845,
2748
+ "step": 389
2749
+ },
2750
+ {
2751
+ "epoch": 0.5164194915254238,
2752
+ "grad_norm": 4.09375,
2753
+ "learning_rate": 5.142382090527415e-06,
2754
+ "loss": 2.0602,
2755
+ "step": 390
2756
+ },
2757
+ {
2758
+ "epoch": 0.5177436440677966,
2759
+ "grad_norm": 3.953125,
2760
+ "learning_rate": 5.1204817797254545e-06,
2761
+ "loss": 1.883,
2762
+ "step": 391
2763
+ },
2764
+ {
2765
+ "epoch": 0.5190677966101694,
2766
+ "grad_norm": 3.75,
2767
+ "learning_rate": 5.0985791558889785e-06,
2768
+ "loss": 2.131,
2769
+ "step": 392
2770
+ },
2771
+ {
2772
+ "epoch": 0.5203919491525424,
2773
+ "grad_norm": 3.90625,
2774
+ "learning_rate": 5.07667463950916e-06,
2775
+ "loss": 2.0166,
2776
+ "step": 393
2777
+ },
2778
+ {
2779
+ "epoch": 0.5217161016949152,
2780
+ "grad_norm": 3.703125,
2781
+ "learning_rate": 5.054768651113506e-06,
2782
+ "loss": 1.9136,
2783
+ "step": 394
2784
+ },
2785
+ {
2786
+ "epoch": 0.5230402542372882,
2787
+ "grad_norm": 4.15625,
2788
+ "learning_rate": 5.032861611257783e-06,
2789
+ "loss": 2.0923,
2790
+ "step": 395
2791
+ },
2792
+ {
2793
+ "epoch": 0.524364406779661,
2794
+ "grad_norm": 3.8125,
2795
+ "learning_rate": 5.0109539405179456e-06,
2796
+ "loss": 2.1243,
2797
+ "step": 396
2798
+ },
2799
+ {
2800
+ "epoch": 0.5256885593220338,
2801
+ "grad_norm": 3.703125,
2802
+ "learning_rate": 4.989046059482055e-06,
2803
+ "loss": 2.0784,
2804
+ "step": 397
2805
+ },
2806
+ {
2807
+ "epoch": 0.5270127118644068,
2808
+ "grad_norm": 3.765625,
2809
+ "learning_rate": 4.967138388742218e-06,
2810
+ "loss": 1.8999,
2811
+ "step": 398
2812
+ },
2813
+ {
2814
+ "epoch": 0.5283368644067796,
2815
+ "grad_norm": 3.734375,
2816
+ "learning_rate": 4.945231348886495e-06,
2817
+ "loss": 2.0906,
2818
+ "step": 399
2819
+ },
2820
+ {
2821
+ "epoch": 0.5296610169491526,
2822
+ "grad_norm": 3.828125,
2823
+ "learning_rate": 4.923325360490841e-06,
2824
+ "loss": 1.9295,
2825
+ "step": 400
2826
+ },
2827
+ {
2828
+ "epoch": 0.5296610169491526,
2829
+ "eval_AskDoctor-Chinese_loss": 1.9834351539611816,
2830
+ "eval_AskDoctor-Chinese_runtime": 15.9925,
2831
+ "eval_AskDoctor-Chinese_samples_per_second": 1.876,
2832
+ "eval_AskDoctor-Chinese_steps_per_second": 1.876,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.5309851694915254,
2837
+ "grad_norm": 4.03125,
2838
+ "learning_rate": 4.9014208441110215e-06,
2839
+ "loss": 2.0197,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.5323093220338984,
2844
+ "grad_norm": 3.75,
2845
+ "learning_rate": 4.879518220274546e-06,
2846
+ "loss": 2.0886,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.5336334745762712,
2851
+ "grad_norm": 4.5,
2852
+ "learning_rate": 4.8576179094725855e-06,
2853
+ "loss": 1.9252,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.534957627118644,
2858
+ "grad_norm": 3.859375,
2859
+ "learning_rate": 4.835720332151907e-06,
2860
+ "loss": 2.0754,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.536281779661017,
2865
+ "grad_norm": 3.6875,
2866
+ "learning_rate": 4.813825908706802e-06,
2867
+ "loss": 2.1356,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.5376059322033898,
2872
+ "grad_norm": 3.8125,
2873
+ "learning_rate": 4.791935059471007e-06,
2874
+ "loss": 2.0131,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.5389300847457628,
2879
+ "grad_norm": 3.734375,
2880
+ "learning_rate": 4.770048204709648e-06,
2881
+ "loss": 1.8858,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.5402542372881356,
2886
+ "grad_norm": 6.34375,
2887
+ "learning_rate": 4.748165764611157e-06,
2888
+ "loss": 1.9881,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.5415783898305084,
2893
+ "grad_norm": 3.734375,
2894
+ "learning_rate": 4.726288159279218e-06,
2895
+ "loss": 2.0027,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.5429025423728814,
2900
+ "grad_norm": 3.9375,
2901
+ "learning_rate": 4.7044158087246926e-06,
2902
+ "loss": 2.1449,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.5442266949152542,
2907
+ "grad_norm": 3.609375,
2908
+ "learning_rate": 4.682549132857562e-06,
2909
+ "loss": 2.0456,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.5455508474576272,
2914
+ "grad_norm": 3.96875,
2915
+ "learning_rate": 4.660688551478861e-06,
2916
+ "loss": 2.2308,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.546875,
2921
+ "grad_norm": 3.875,
2922
+ "learning_rate": 4.6388344842726266e-06,
2923
+ "loss": 2.0734,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.5481991525423728,
2928
+ "grad_norm": 3.84375,
2929
+ "learning_rate": 4.616987350797827e-06,
2930
+ "loss": 2.0188,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.5495233050847458,
2935
+ "grad_norm": 3.578125,
2936
+ "learning_rate": 4.595147570480324e-06,
2937
+ "loss": 2.1403,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.5508474576271186,
2942
+ "grad_norm": 5.75,
2943
+ "learning_rate": 4.573315562604804e-06,
2944
+ "loss": 1.8386,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.5521716101694916,
2949
+ "grad_norm": 3.671875,
2950
+ "learning_rate": 4.551491746306744e-06,
2951
+ "loss": 2.0066,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.5534957627118644,
2956
+ "grad_norm": 4.0625,
2957
+ "learning_rate": 4.529676540564351e-06,
2958
+ "loss": 1.9468,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.5548199152542372,
2963
+ "grad_norm": 3.9375,
2964
+ "learning_rate": 4.5078703641905275e-06,
2965
+ "loss": 2.0946,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.5561440677966102,
2970
+ "grad_norm": 3.625,
2971
+ "learning_rate": 4.486073635824831e-06,
2972
+ "loss": 2.206,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.557468220338983,
2977
+ "grad_norm": 3.734375,
2978
+ "learning_rate": 4.464286773925426e-06,
2979
+ "loss": 1.977,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.558792372881356,
2984
+ "grad_norm": 3.765625,
2985
+ "learning_rate": 4.442510196761068e-06,
2986
+ "loss": 1.8473,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.5601165254237288,
2991
+ "grad_norm": 3.65625,
2992
+ "learning_rate": 4.420744322403058e-06,
2993
+ "loss": 2.1905,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.5614406779661016,
2998
+ "grad_norm": 3.71875,
2999
+ "learning_rate": 4.398989568717226e-06,
3000
+ "loss": 2.0168,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.5627648305084746,
3005
+ "grad_norm": 4.84375,
3006
+ "learning_rate": 4.377246353355899e-06,
3007
+ "loss": 1.9603,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.5640889830508474,
3012
+ "grad_norm": 3.703125,
3013
+ "learning_rate": 4.355515093749897e-06,
3014
+ "loss": 1.9786,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.5654131355932204,
3019
+ "grad_norm": 3.703125,
3020
+ "learning_rate": 4.333796207100505e-06,
3021
+ "loss": 1.9911,
3022
+ "step": 427
3023
+ },
3024
+ {
3025
+ "epoch": 0.5667372881355932,
3026
+ "grad_norm": 5.25,
3027
+ "learning_rate": 4.312090110371473e-06,
3028
+ "loss": 1.9617,
3029
+ "step": 428
3030
+ },
3031
+ {
3032
+ "epoch": 0.5680614406779662,
3033
+ "grad_norm": 3.921875,
3034
+ "learning_rate": 4.290397220281002e-06,
3035
+ "loss": 1.9384,
3036
+ "step": 429
3037
+ },
3038
+ {
3039
+ "epoch": 0.569385593220339,
3040
+ "grad_norm": 3.84375,
3041
+ "learning_rate": 4.268717953293755e-06,
3042
+ "loss": 2.1731,
3043
+ "step": 430
3044
+ },
3045
+ {
3046
+ "epoch": 0.5707097457627118,
3047
+ "grad_norm": 3.796875,
3048
+ "learning_rate": 4.247052725612853e-06,
3049
+ "loss": 1.8694,
3050
+ "step": 431
3051
+ },
3052
+ {
3053
+ "epoch": 0.5720338983050848,
3054
+ "grad_norm": 3.90625,
3055
+ "learning_rate": 4.22540195317189e-06,
3056
+ "loss": 1.8741,
3057
+ "step": 432
3058
+ },
3059
+ {
3060
+ "epoch": 0.5733580508474576,
3061
+ "grad_norm": 3.6875,
3062
+ "learning_rate": 4.203766051626939e-06,
3063
+ "loss": 1.9796,
3064
+ "step": 433
3065
+ },
3066
+ {
3067
+ "epoch": 0.5746822033898306,
3068
+ "grad_norm": 4.0,
3069
+ "learning_rate": 4.182145436348587e-06,
3070
+ "loss": 1.9154,
3071
+ "step": 434
3072
+ },
3073
+ {
3074
+ "epoch": 0.5760063559322034,
3075
+ "grad_norm": 3.6875,
3076
+ "learning_rate": 4.160540522413947e-06,
3077
+ "loss": 1.9181,
3078
+ "step": 435
3079
+ },
3080
+ {
3081
+ "epoch": 0.5773305084745762,
3082
+ "grad_norm": 3.6875,
3083
+ "learning_rate": 4.138951724598692e-06,
3084
+ "loss": 2.0523,
3085
+ "step": 436
3086
+ },
3087
+ {
3088
+ "epoch": 0.5786546610169492,
3089
+ "grad_norm": 3.8125,
3090
+ "learning_rate": 4.1173794573691e-06,
3091
+ "loss": 1.8367,
3092
+ "step": 437
3093
+ },
3094
+ {
3095
+ "epoch": 0.579978813559322,
3096
+ "grad_norm": 3.96875,
3097
+ "learning_rate": 4.095824134874087e-06,
3098
+ "loss": 2.0884,
3099
+ "step": 438
3100
+ },
3101
+ {
3102
+ "epoch": 0.581302966101695,
3103
+ "grad_norm": 4.03125,
3104
+ "learning_rate": 4.074286170937265e-06,
3105
+ "loss": 2.0347,
3106
+ "step": 439
3107
+ },
3108
+ {
3109
+ "epoch": 0.5826271186440678,
3110
+ "grad_norm": 4.0625,
3111
+ "learning_rate": 4.052765979048986e-06,
3112
+ "loss": 2.0196,
3113
+ "step": 440
3114
+ },
3115
+ {
3116
+ "epoch": 0.5839512711864406,
3117
+ "grad_norm": 3.734375,
3118
+ "learning_rate": 4.031263972358419e-06,
3119
+ "loss": 1.9662,
3120
+ "step": 441
3121
+ },
3122
+ {
3123
+ "epoch": 0.5852754237288136,
3124
+ "grad_norm": 3.6875,
3125
+ "learning_rate": 4.009780563665601e-06,
3126
+ "loss": 1.9913,
3127
+ "step": 442
3128
+ },
3129
+ {
3130
+ "epoch": 0.5865995762711864,
3131
+ "grad_norm": 3.90625,
3132
+ "learning_rate": 3.988316165413528e-06,
3133
+ "loss": 2.0734,
3134
+ "step": 443
3135
+ },
3136
+ {
3137
+ "epoch": 0.5879237288135594,
3138
+ "grad_norm": 3.71875,
3139
+ "learning_rate": 3.966871189680223e-06,
3140
+ "loss": 1.9153,
3141
+ "step": 444
3142
+ },
3143
+ {
3144
+ "epoch": 0.5892478813559322,
3145
+ "grad_norm": 3.96875,
3146
+ "learning_rate": 3.945446048170839e-06,
3147
+ "loss": 1.9798,
3148
+ "step": 445
3149
+ },
3150
+ {
3151
+ "epoch": 0.590572033898305,
3152
+ "grad_norm": 3.8125,
3153
+ "learning_rate": 3.924041152209739e-06,
3154
+ "loss": 1.9039,
3155
+ "step": 446
3156
+ },
3157
+ {
3158
+ "epoch": 0.591896186440678,
3159
+ "grad_norm": 4.4375,
3160
+ "learning_rate": 3.902656912732616e-06,
3161
+ "loss": 1.9863,
3162
+ "step": 447
3163
+ },
3164
+ {
3165
+ "epoch": 0.5932203389830508,
3166
+ "grad_norm": 3.984375,
3167
+ "learning_rate": 3.881293740278588e-06,
3168
+ "loss": 1.9465,
3169
+ "step": 448
3170
+ },
3171
+ {
3172
+ "epoch": 0.5945444915254238,
3173
+ "grad_norm": 3.71875,
3174
+ "learning_rate": 3.859952044982329e-06,
3175
+ "loss": 2.0645,
3176
+ "step": 449
3177
+ },
3178
+ {
3179
+ "epoch": 0.5958686440677966,
3180
+ "grad_norm": 3.828125,
3181
+ "learning_rate": 3.83863223656619e-06,
3182
+ "loss": 2.0472,
3183
+ "step": 450
3184
+ },
3185
+ {
3186
+ "epoch": 0.5971927966101694,
3187
+ "grad_norm": 3.671875,
3188
+ "learning_rate": 3.8173347243323275e-06,
3189
+ "loss": 1.8184,
3190
+ "step": 451
3191
+ },
3192
+ {
3193
+ "epoch": 0.5985169491525424,
3194
+ "grad_norm": 4.0625,
3195
+ "learning_rate": 3.7960599171548572e-06,
3196
+ "loss": 1.9835,
3197
+ "step": 452
3198
+ },
3199
+ {
3200
+ "epoch": 0.5998411016949152,
3201
+ "grad_norm": 3.671875,
3202
+ "learning_rate": 3.774808223471996e-06,
3203
+ "loss": 1.9712,
3204
+ "step": 453
3205
+ },
3206
+ {
3207
+ "epoch": 0.6011652542372882,
3208
+ "grad_norm": 3.703125,
3209
+ "learning_rate": 3.7535800512782254e-06,
3210
+ "loss": 2.0324,
3211
+ "step": 454
3212
+ },
3213
+ {
3214
+ "epoch": 0.602489406779661,
3215
+ "grad_norm": 3.59375,
3216
+ "learning_rate": 3.732375808116451e-06,
3217
+ "loss": 2.1901,
3218
+ "step": 455
3219
+ },
3220
+ {
3221
+ "epoch": 0.6038135593220338,
3222
+ "grad_norm": 3.625,
3223
+ "learning_rate": 3.711195901070188e-06,
3224
+ "loss": 2.031,
3225
+ "step": 456
3226
+ },
3227
+ {
3228
+ "epoch": 0.6051377118644068,
3229
+ "grad_norm": 3.78125,
3230
+ "learning_rate": 3.690040736755742e-06,
3231
+ "loss": 2.0682,
3232
+ "step": 457
3233
+ },
3234
+ {
3235
+ "epoch": 0.6064618644067796,
3236
+ "grad_norm": 3.78125,
3237
+ "learning_rate": 3.6689107213144025e-06,
3238
+ "loss": 2.1191,
3239
+ "step": 458
3240
+ },
3241
+ {
3242
+ "epoch": 0.6077860169491526,
3243
+ "grad_norm": 3.65625,
3244
+ "learning_rate": 3.6478062604046406e-06,
3245
+ "loss": 1.921,
3246
+ "step": 459
3247
+ },
3248
+ {
3249
+ "epoch": 0.6091101694915254,
3250
+ "grad_norm": 6.03125,
3251
+ "learning_rate": 3.626727759194334e-06,
3252
+ "loss": 2.0207,
3253
+ "step": 460
3254
+ },
3255
+ {
3256
+ "epoch": 0.6104343220338984,
3257
+ "grad_norm": 3.59375,
3258
+ "learning_rate": 3.6056756223529734e-06,
3259
+ "loss": 2.1463,
3260
+ "step": 461
3261
+ },
3262
+ {
3263
+ "epoch": 0.6117584745762712,
3264
+ "grad_norm": 4.1875,
3265
+ "learning_rate": 3.5846502540439076e-06,
3266
+ "loss": 1.9282,
3267
+ "step": 462
3268
+ },
3269
+ {
3270
+ "epoch": 0.613082627118644,
3271
+ "grad_norm": 3.53125,
3272
+ "learning_rate": 3.5636520579165704e-06,
3273
+ "loss": 2.1905,
3274
+ "step": 463
3275
+ },
3276
+ {
3277
+ "epoch": 0.614406779661017,
3278
+ "grad_norm": 3.515625,
3279
+ "learning_rate": 3.542681437098745e-06,
3280
+ "loss": 2.1518,
3281
+ "step": 464
3282
+ },
3283
+ {
3284
+ "epoch": 0.6157309322033898,
3285
+ "grad_norm": 3.8125,
3286
+ "learning_rate": 3.5217387941888117e-06,
3287
+ "loss": 2.0076,
3288
+ "step": 465
3289
+ },
3290
+ {
3291
+ "epoch": 0.6170550847457628,
3292
+ "grad_norm": 3.765625,
3293
+ "learning_rate": 3.5008245312480326e-06,
3294
+ "loss": 2.1018,
3295
+ "step": 466
3296
+ },
3297
+ {
3298
+ "epoch": 0.6183792372881356,
3299
+ "grad_norm": 4.09375,
3300
+ "learning_rate": 3.479939049792817e-06,
3301
+ "loss": 1.8781,
3302
+ "step": 467
3303
+ },
3304
+ {
3305
+ "epoch": 0.6197033898305084,
3306
+ "grad_norm": 3.78125,
3307
+ "learning_rate": 3.4590827507870257e-06,
3308
+ "loss": 2.0801,
3309
+ "step": 468
3310
+ },
3311
+ {
3312
+ "epoch": 0.6210275423728814,
3313
+ "grad_norm": 4.375,
3314
+ "learning_rate": 3.4382560346342707e-06,
3315
+ "loss": 2.211,
3316
+ "step": 469
3317
+ },
3318
+ {
3319
+ "epoch": 0.6223516949152542,
3320
+ "grad_norm": 3.828125,
3321
+ "learning_rate": 3.4174593011702197e-06,
3322
+ "loss": 1.8481,
3323
+ "step": 470
3324
+ },
3325
+ {
3326
+ "epoch": 0.6236758474576272,
3327
+ "grad_norm": 3.671875,
3328
+ "learning_rate": 3.396692949654933e-06,
3329
+ "loss": 2.0414,
3330
+ "step": 471
3331
+ },
3332
+ {
3333
+ "epoch": 0.625,
3334
+ "grad_norm": 3.984375,
3335
+ "learning_rate": 3.3759573787651877e-06,
3336
+ "loss": 2.094,
3337
+ "step": 472
3338
+ },
3339
+ {
3340
+ "epoch": 0.6263241525423728,
3341
+ "grad_norm": 3.734375,
3342
+ "learning_rate": 3.3552529865868323e-06,
3343
+ "loss": 2.0496,
3344
+ "step": 473
3345
+ },
3346
+ {
3347
+ "epoch": 0.6276483050847458,
3348
+ "grad_norm": 3.84375,
3349
+ "learning_rate": 3.3345801706071325e-06,
3350
+ "loss": 2.113,
3351
+ "step": 474
3352
+ },
3353
+ {
3354
+ "epoch": 0.6289724576271186,
3355
+ "grad_norm": 4.03125,
3356
+ "learning_rate": 3.3139393277071554e-06,
3357
+ "loss": 1.8577,
3358
+ "step": 475
3359
+ },
3360
+ {
3361
+ "epoch": 0.6302966101694916,
3362
+ "grad_norm": 5.21875,
3363
+ "learning_rate": 3.2933308541541365e-06,
3364
+ "loss": 2.059,
3365
+ "step": 476
3366
+ },
3367
+ {
3368
+ "epoch": 0.6316207627118644,
3369
+ "grad_norm": 3.5625,
3370
+ "learning_rate": 3.2727551455938832e-06,
3371
+ "loss": 2.1471,
3372
+ "step": 477
3373
+ },
3374
+ {
3375
+ "epoch": 0.6329449152542372,
3376
+ "grad_norm": 3.953125,
3377
+ "learning_rate": 3.252212597043167e-06,
3378
+ "loss": 2.0538,
3379
+ "step": 478
3380
+ },
3381
+ {
3382
+ "epoch": 0.6342690677966102,
3383
+ "grad_norm": 3.8125,
3384
+ "learning_rate": 3.2317036028821523e-06,
3385
+ "loss": 1.9275,
3386
+ "step": 479
3387
+ },
3388
+ {
3389
+ "epoch": 0.635593220338983,
3390
+ "grad_norm": 4.125,
3391
+ "learning_rate": 3.2112285568468166e-06,
3392
+ "loss": 1.9979,
3393
+ "step": 480
3394
+ },
3395
+ {
3396
+ "epoch": 0.636917372881356,
3397
+ "grad_norm": 3.796875,
3398
+ "learning_rate": 3.190787852021396e-06,
3399
+ "loss": 2.1286,
3400
+ "step": 481
3401
+ },
3402
+ {
3403
+ "epoch": 0.6382415254237288,
3404
+ "grad_norm": 3.78125,
3405
+ "learning_rate": 3.1703818808308327e-06,
3406
+ "loss": 2.007,
3407
+ "step": 482
3408
+ },
3409
+ {
3410
+ "epoch": 0.6395656779661016,
3411
+ "grad_norm": 3.859375,
3412
+ "learning_rate": 3.1500110350332492e-06,
3413
+ "loss": 1.9457,
3414
+ "step": 483
3415
+ },
3416
+ {
3417
+ "epoch": 0.6408898305084746,
3418
+ "grad_norm": 4.09375,
3419
+ "learning_rate": 3.1296757057124243e-06,
3420
+ "loss": 1.9245,
3421
+ "step": 484
3422
+ },
3423
+ {
3424
+ "epoch": 0.6422139830508474,
3425
+ "grad_norm": 4.125,
3426
+ "learning_rate": 3.1093762832702775e-06,
3427
+ "loss": 2.0545,
3428
+ "step": 485
3429
+ },
3430
+ {
3431
+ "epoch": 0.6435381355932204,
3432
+ "grad_norm": 3.859375,
3433
+ "learning_rate": 3.08911315741939e-06,
3434
+ "loss": 2.0104,
3435
+ "step": 486
3436
+ },
3437
+ {
3438
+ "epoch": 0.6448622881355932,
3439
+ "grad_norm": 3.515625,
3440
+ "learning_rate": 3.0688867171755043e-06,
3441
+ "loss": 2.0609,
3442
+ "step": 487
3443
+ },
3444
+ {
3445
+ "epoch": 0.6461864406779662,
3446
+ "grad_norm": 3.609375,
3447
+ "learning_rate": 3.048697350850073e-06,
3448
+ "loss": 2.0671,
3449
+ "step": 488
3450
+ },
3451
+ {
3452
+ "epoch": 0.647510593220339,
3453
+ "grad_norm": 3.96875,
3454
+ "learning_rate": 3.0285454460427855e-06,
3455
+ "loss": 1.9852,
3456
+ "step": 489
3457
+ },
3458
+ {
3459
+ "epoch": 0.6488347457627118,
3460
+ "grad_norm": 3.859375,
3461
+ "learning_rate": 3.0084313896341504e-06,
3462
+ "loss": 1.9553,
3463
+ "step": 490
3464
+ },
3465
+ {
3466
+ "epoch": 0.6501588983050848,
3467
+ "grad_norm": 3.625,
3468
+ "learning_rate": 2.988355567778043e-06,
3469
+ "loss": 2.1243,
3470
+ "step": 491
3471
+ },
3472
+ {
3473
+ "epoch": 0.6514830508474576,
3474
+ "grad_norm": 4.09375,
3475
+ "learning_rate": 2.9683183658943106e-06,
3476
+ "loss": 2.137,
3477
+ "step": 492
3478
+ },
3479
+ {
3480
+ "epoch": 0.6528072033898306,
3481
+ "grad_norm": 3.9375,
3482
+ "learning_rate": 2.9483201686613626e-06,
3483
+ "loss": 1.9655,
3484
+ "step": 493
3485
+ },
3486
+ {
3487
+ "epoch": 0.6541313559322034,
3488
+ "grad_norm": 4.03125,
3489
+ "learning_rate": 2.9283613600087933e-06,
3490
+ "loss": 2.0074,
3491
+ "step": 494
3492
+ },
3493
+ {
3494
+ "epoch": 0.6554555084745762,
3495
+ "grad_norm": 3.84375,
3496
+ "learning_rate": 2.9084423231099985e-06,
3497
+ "loss": 1.8278,
3498
+ "step": 495
3499
+ },
3500
+ {
3501
+ "epoch": 0.6567796610169492,
3502
+ "grad_norm": 3.765625,
3503
+ "learning_rate": 2.8885634403748397e-06,
3504
+ "loss": 2.0682,
3505
+ "step": 496
3506
+ },
3507
+ {
3508
+ "epoch": 0.658103813559322,
3509
+ "grad_norm": 3.796875,
3510
+ "learning_rate": 2.8687250934422774e-06,
3511
+ "loss": 2.0537,
3512
+ "step": 497
3513
+ },
3514
+ {
3515
+ "epoch": 0.659427966101695,
3516
+ "grad_norm": 3.828125,
3517
+ "learning_rate": 2.8489276631730633e-06,
3518
+ "loss": 1.848,
3519
+ "step": 498
3520
+ },
3521
+ {
3522
+ "epoch": 0.6607521186440678,
3523
+ "grad_norm": 3.765625,
3524
+ "learning_rate": 2.8291715296424282e-06,
3525
+ "loss": 1.9693,
3526
+ "step": 499
3527
+ },
3528
+ {
3529
+ "epoch": 0.6620762711864406,
3530
+ "grad_norm": 3.59375,
3531
+ "learning_rate": 2.809457072132766e-06,
3532
+ "loss": 1.8889,
3533
+ "step": 500
3534
+ }
3535
+ ],
3536
+ "logging_steps": 1.0,
3537
+ "max_steps": 755,
3538
+ "num_input_tokens_seen": 0,
3539
+ "num_train_epochs": 1,
3540
+ "save_steps": 500,
3541
+ "total_flos": 8.160964319714918e+17,
3542
+ "train_batch_size": 1,
3543
+ "trial_name": null,
3544
+ "trial_params": null
3545
+ }
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: HIT-SCIR/Chinese-Mixtral-8x7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HIT-SCIR/Chinese-Mixtral-8x7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "embed_tokens",
19
+ "lm_head"
20
+ ],
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "w3",
28
+ "w2",
29
+ "q_proj",
30
+ "v_proj",
31
+ "k_proj",
32
+ "w1"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:869c0a29e5f213301cae4a40e2ebda015e5c8827060d3fd10889de1700fe3452
3
+ size 2855150432
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:037904cde69c61f1defddcc37e3182d35e750584d21f2a458611b2990c3c8e78
3
+ size 5711286983
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56cd52d1f16d6557e3de3a7f4fa135a846ad195683a8b9fa440e0c50a897dad
3
+ size 14575
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e76413f7f5adb64ff2a38f8e8eb48d92ecc3f523c077caa6e0f44e59f3b3cc97
3
+ size 627
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86840d604f9e18ebbdc35aa937cfc2486fe774534ceea0fd3f667a72bc7584b2
3
+ size 925420
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6620762711864406,
5
+ "eval_steps": 200,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0013241525423728813,
13
+ "grad_norm": 26.125,
14
+ "learning_rate": 2.6315789473684213e-07,
15
+ "loss": 3.7676,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0013241525423728813,
20
+ "eval_AskDoctor-Chinese_loss": 3.761261463165283,
21
+ "eval_AskDoctor-Chinese_runtime": 15.9737,
22
+ "eval_AskDoctor-Chinese_samples_per_second": 1.878,
23
+ "eval_AskDoctor-Chinese_steps_per_second": 1.878,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0026483050847457626,
28
+ "grad_norm": 27.375,
29
+ "learning_rate": 5.263157894736843e-07,
30
+ "loss": 3.8885,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.003972457627118644,
35
+ "grad_norm": 28.125,
36
+ "learning_rate": 7.894736842105263e-07,
37
+ "loss": 3.8601,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.005296610169491525,
42
+ "grad_norm": 26.25,
43
+ "learning_rate": 1.0526315789473685e-06,
44
+ "loss": 3.8192,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.0066207627118644065,
49
+ "grad_norm": 29.0,
50
+ "learning_rate": 1.3157894736842106e-06,
51
+ "loss": 3.7572,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.007944915254237288,
56
+ "grad_norm": 30.5,
57
+ "learning_rate": 1.5789473684210526e-06,
58
+ "loss": 3.9407,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.009269067796610169,
63
+ "grad_norm": 30.25,
64
+ "learning_rate": 1.8421052631578948e-06,
65
+ "loss": 3.9034,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01059322033898305,
70
+ "grad_norm": 30.5,
71
+ "learning_rate": 2.105263157894737e-06,
72
+ "loss": 3.7951,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.011917372881355932,
77
+ "grad_norm": 26.0,
78
+ "learning_rate": 2.368421052631579e-06,
79
+ "loss": 3.7,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.013241525423728813,
84
+ "grad_norm": 28.625,
85
+ "learning_rate": 2.631578947368421e-06,
86
+ "loss": 3.6931,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.014565677966101694,
91
+ "grad_norm": 25.125,
92
+ "learning_rate": 2.8947368421052634e-06,
93
+ "loss": 3.5419,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.015889830508474576,
98
+ "grad_norm": 25.5,
99
+ "learning_rate": 3.157894736842105e-06,
100
+ "loss": 3.6584,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.017213983050847457,
105
+ "grad_norm": 23.875,
106
+ "learning_rate": 3.421052631578948e-06,
107
+ "loss": 3.5614,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.018538135593220338,
112
+ "grad_norm": 23.875,
113
+ "learning_rate": 3.6842105263157896e-06,
114
+ "loss": 3.5783,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.01986228813559322,
119
+ "grad_norm": 23.25,
120
+ "learning_rate": 3.947368421052632e-06,
121
+ "loss": 3.5407,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.0211864406779661,
126
+ "grad_norm": 22.0,
127
+ "learning_rate": 4.210526315789474e-06,
128
+ "loss": 3.3536,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.022510593220338982,
133
+ "grad_norm": 20.0,
134
+ "learning_rate": 4.473684210526316e-06,
135
+ "loss": 3.2685,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.023834745762711863,
140
+ "grad_norm": 19.5,
141
+ "learning_rate": 4.736842105263158e-06,
142
+ "loss": 3.3136,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.025158898305084745,
147
+ "grad_norm": 18.875,
148
+ "learning_rate": 5e-06,
149
+ "loss": 3.3371,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.026483050847457626,
154
+ "grad_norm": 26.125,
155
+ "learning_rate": 5.263157894736842e-06,
156
+ "loss": 3.2935,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.027807203389830507,
161
+ "grad_norm": 18.375,
162
+ "learning_rate": 5.526315789473685e-06,
163
+ "loss": 3.1542,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.02913135593220339,
168
+ "grad_norm": 16.125,
169
+ "learning_rate": 5.789473684210527e-06,
170
+ "loss": 3.0697,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.03045550847457627,
175
+ "grad_norm": 17.75,
176
+ "learning_rate": 6.0526315789473685e-06,
177
+ "loss": 3.0135,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.03177966101694915,
182
+ "grad_norm": 16.5,
183
+ "learning_rate": 6.31578947368421e-06,
184
+ "loss": 2.9917,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.033103813559322036,
189
+ "grad_norm": 14.5625,
190
+ "learning_rate": 6.578947368421054e-06,
191
+ "loss": 2.9261,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.034427966101694914,
196
+ "grad_norm": 20.375,
197
+ "learning_rate": 6.842105263157896e-06,
198
+ "loss": 2.8072,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.0357521186440678,
203
+ "grad_norm": 13.375,
204
+ "learning_rate": 7.1052631578947375e-06,
205
+ "loss": 2.876,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.037076271186440676,
210
+ "grad_norm": 12.5,
211
+ "learning_rate": 7.368421052631579e-06,
212
+ "loss": 2.7867,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.03840042372881356,
217
+ "grad_norm": 14.625,
218
+ "learning_rate": 7.631578947368423e-06,
219
+ "loss": 2.6454,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.03972457627118644,
224
+ "grad_norm": 16.625,
225
+ "learning_rate": 7.894736842105265e-06,
226
+ "loss": 2.6395,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.041048728813559324,
231
+ "grad_norm": 10.1875,
232
+ "learning_rate": 8.157894736842106e-06,
233
+ "loss": 2.5909,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.0423728813559322,
238
+ "grad_norm": 12.4375,
239
+ "learning_rate": 8.421052631578948e-06,
240
+ "loss": 2.5511,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.043697033898305086,
245
+ "grad_norm": 10.375,
246
+ "learning_rate": 8.68421052631579e-06,
247
+ "loss": 2.4177,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.045021186440677964,
252
+ "grad_norm": 8.5625,
253
+ "learning_rate": 8.947368421052632e-06,
254
+ "loss": 2.4405,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.04634533898305085,
259
+ "grad_norm": 8.5625,
260
+ "learning_rate": 9.210526315789474e-06,
261
+ "loss": 2.5073,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.04766949152542373,
266
+ "grad_norm": 7.625,
267
+ "learning_rate": 9.473684210526315e-06,
268
+ "loss": 2.4031,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.04899364406779661,
273
+ "grad_norm": 9.375,
274
+ "learning_rate": 9.736842105263159e-06,
275
+ "loss": 2.4698,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.05031779661016949,
280
+ "grad_norm": 6.75,
281
+ "learning_rate": 1e-05,
282
+ "loss": 2.4379,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.051641949152542374,
287
+ "grad_norm": 7.59375,
288
+ "learning_rate": 9.999952004474853e-06,
289
+ "loss": 2.3739,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.05296610169491525,
294
+ "grad_norm": 6.375,
295
+ "learning_rate": 9.999808018820836e-06,
296
+ "loss": 2.433,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.05429025423728814,
301
+ "grad_norm": 5.96875,
302
+ "learning_rate": 9.999568045802216e-06,
303
+ "loss": 2.4569,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.055614406779661014,
308
+ "grad_norm": 5.59375,
309
+ "learning_rate": 9.99923209002605e-06,
310
+ "loss": 2.3297,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.0569385593220339,
315
+ "grad_norm": 5.5,
316
+ "learning_rate": 9.998800157942083e-06,
317
+ "loss": 2.3064,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.05826271186440678,
322
+ "grad_norm": 5.375,
323
+ "learning_rate": 9.99827225784264e-06,
324
+ "loss": 2.2746,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.05958686440677966,
329
+ "grad_norm": 4.9375,
330
+ "learning_rate": 9.997648399862457e-06,
331
+ "loss": 2.2981,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.06091101694915254,
336
+ "grad_norm": 5.5625,
337
+ "learning_rate": 9.99692859597849e-06,
338
+ "loss": 2.0856,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.062235169491525424,
343
+ "grad_norm": 5.71875,
344
+ "learning_rate": 9.996112860009689e-06,
345
+ "loss": 2.1083,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.0635593220338983,
350
+ "grad_norm": 5.53125,
351
+ "learning_rate": 9.995201207616718e-06,
352
+ "loss": 2.1841,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.06488347457627118,
357
+ "grad_norm": 4.65625,
358
+ "learning_rate": 9.994193656301676e-06,
359
+ "loss": 2.3351,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.06620762711864407,
364
+ "grad_norm": 5.1875,
365
+ "learning_rate": 9.993090225407743e-06,
366
+ "loss": 2.2625,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.06753177966101695,
371
+ "grad_norm": 13.0625,
372
+ "learning_rate": 9.991890936118817e-06,
373
+ "loss": 2.1591,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.06885593220338983,
378
+ "grad_norm": 4.53125,
379
+ "learning_rate": 9.990595811459109e-06,
380
+ "loss": 2.2935,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.0701800847457627,
385
+ "grad_norm": 4.46875,
386
+ "learning_rate": 9.98920487629269e-06,
387
+ "loss": 2.4604,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.0715042372881356,
392
+ "grad_norm": 4.5625,
393
+ "learning_rate": 9.987718157323026e-06,
394
+ "loss": 2.249,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.07282838983050847,
399
+ "grad_norm": 4.59375,
400
+ "learning_rate": 9.986135683092461e-06,
401
+ "loss": 2.2686,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.07415254237288135,
406
+ "grad_norm": 4.21875,
407
+ "learning_rate": 9.98445748398167e-06,
408
+ "loss": 2.291,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.07547669491525423,
413
+ "grad_norm": 4.28125,
414
+ "learning_rate": 9.982683592209069e-06,
415
+ "loss": 2.1275,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.07680084745762712,
420
+ "grad_norm": 12.875,
421
+ "learning_rate": 9.980814041830203e-06,
422
+ "loss": 2.1489,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.078125,
427
+ "grad_norm": 4.375,
428
+ "learning_rate": 9.978848868737099e-06,
429
+ "loss": 2.271,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.07944915254237288,
434
+ "grad_norm": 4.84375,
435
+ "learning_rate": 9.976788110657558e-06,
436
+ "loss": 2.3377,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.08077330508474577,
441
+ "grad_norm": 4.09375,
442
+ "learning_rate": 9.974631807154447e-06,
443
+ "loss": 2.3359,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.08209745762711865,
448
+ "grad_norm": 4.25,
449
+ "learning_rate": 9.972379999624935e-06,
450
+ "loss": 2.2142,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.08342161016949153,
455
+ "grad_norm": 12.375,
456
+ "learning_rate": 9.970032731299697e-06,
457
+ "loss": 2.1888,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.0847457627118644,
462
+ "grad_norm": 4.15625,
463
+ "learning_rate": 9.967590047242082e-06,
464
+ "loss": 2.3571,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.0860699152542373,
469
+ "grad_norm": 4.25,
470
+ "learning_rate": 9.96505199434725e-06,
471
+ "loss": 2.1241,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.08739406779661017,
476
+ "grad_norm": 4.65625,
477
+ "learning_rate": 9.962418621341275e-06,
478
+ "loss": 2.0733,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.08871822033898305,
483
+ "grad_norm": 9.75,
484
+ "learning_rate": 9.959689978780207e-06,
485
+ "loss": 2.1612,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.09004237288135593,
490
+ "grad_norm": 4.4375,
491
+ "learning_rate": 9.956866119049095e-06,
492
+ "loss": 2.1519,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.09136652542372882,
497
+ "grad_norm": 9.125,
498
+ "learning_rate": 9.953947096360996e-06,
499
+ "loss": 2.1352,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.0926906779661017,
504
+ "grad_norm": 4.25,
505
+ "learning_rate": 9.950932966755917e-06,
506
+ "loss": 2.1954,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.09401483050847458,
511
+ "grad_norm": 4.03125,
512
+ "learning_rate": 9.947823788099754e-06,
513
+ "loss": 2.1761,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.09533898305084745,
518
+ "grad_norm": 3.921875,
519
+ "learning_rate": 9.94461962008317e-06,
520
+ "loss": 2.1397,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.09666313559322035,
525
+ "grad_norm": 4.625,
526
+ "learning_rate": 9.941320524220455e-06,
527
+ "loss": 2.1281,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.09798728813559322,
532
+ "grad_norm": 7.96875,
533
+ "learning_rate": 9.937926563848345e-06,
534
+ "loss": 1.8948,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.0993114406779661,
539
+ "grad_norm": 4.75,
540
+ "learning_rate": 9.934437804124807e-06,
541
+ "loss": 2.3239,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.10063559322033898,
546
+ "grad_norm": 3.984375,
547
+ "learning_rate": 9.93085431202778e-06,
548
+ "loss": 2.3193,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.10195974576271187,
553
+ "grad_norm": 4.34375,
554
+ "learning_rate": 9.9271761563539e-06,
555
+ "loss": 2.0956,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.10328389830508475,
560
+ "grad_norm": 4.65625,
561
+ "learning_rate": 9.92340340771717e-06,
562
+ "loss": 2.3226,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.10460805084745763,
567
+ "grad_norm": 4.6875,
568
+ "learning_rate": 9.919536138547611e-06,
569
+ "loss": 2.1505,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.1059322033898305,
574
+ "grad_norm": 6.1875,
575
+ "learning_rate": 9.915574423089872e-06,
576
+ "loss": 2.0939,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.1072563559322034,
581
+ "grad_norm": 12.75,
582
+ "learning_rate": 9.911518337401792e-06,
583
+ "loss": 2.2263,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.10858050847457627,
588
+ "grad_norm": 4.03125,
589
+ "learning_rate": 9.907367959352964e-06,
590
+ "loss": 2.1133,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.10990466101694915,
595
+ "grad_norm": 3.984375,
596
+ "learning_rate": 9.903123368623216e-06,
597
+ "loss": 2.1183,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.11122881355932203,
602
+ "grad_norm": 4.46875,
603
+ "learning_rate": 9.898784646701087e-06,
604
+ "loss": 2.1461,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.11255296610169492,
609
+ "grad_norm": 4.53125,
610
+ "learning_rate": 9.894351876882277e-06,
611
+ "loss": 2.1963,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.1138771186440678,
616
+ "grad_norm": 5.09375,
617
+ "learning_rate": 9.889825144268029e-06,
618
+ "loss": 2.1679,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.11520127118644068,
623
+ "grad_norm": 4.34375,
624
+ "learning_rate": 9.88520453576351e-06,
625
+ "loss": 2.1925,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.11652542372881355,
630
+ "grad_norm": 4.0625,
631
+ "learning_rate": 9.88049014007613e-06,
632
+ "loss": 2.1166,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.11784957627118645,
637
+ "grad_norm": 3.796875,
638
+ "learning_rate": 9.875682047713847e-06,
639
+ "loss": 2.0244,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.11917372881355932,
644
+ "grad_norm": 4.125,
645
+ "learning_rate": 9.87078035098343e-06,
646
+ "loss": 2.1427,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.1204978813559322,
651
+ "grad_norm": 4.25,
652
+ "learning_rate": 9.865785143988684e-06,
653
+ "loss": 2.2495,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.12182203389830508,
658
+ "grad_norm": 4.21875,
659
+ "learning_rate": 9.860696522628638e-06,
660
+ "loss": 2.1213,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.12314618644067797,
665
+ "grad_norm": 4.40625,
666
+ "learning_rate": 9.855514584595719e-06,
667
+ "loss": 2.1922,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.12447033898305085,
672
+ "grad_norm": 4.21875,
673
+ "learning_rate": 9.850239429373855e-06,
674
+ "loss": 2.16,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.12579449152542374,
679
+ "grad_norm": 4.1875,
680
+ "learning_rate": 9.84487115823659e-06,
681
+ "loss": 2.1521,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.1271186440677966,
686
+ "grad_norm": 4.375,
687
+ "learning_rate": 9.839409874245118e-06,
688
+ "loss": 2.1293,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.1284427966101695,
693
+ "grad_norm": 8.6875,
694
+ "learning_rate": 9.833855682246319e-06,
695
+ "loss": 2.1652,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.12976694915254236,
700
+ "grad_norm": 4.03125,
701
+ "learning_rate": 9.828208688870736e-06,
702
+ "loss": 2.0963,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.13109110169491525,
707
+ "grad_norm": 4.3125,
708
+ "learning_rate": 9.822469002530531e-06,
709
+ "loss": 2.1573,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.13241525423728814,
714
+ "grad_norm": 3.75,
715
+ "learning_rate": 9.816636733417413e-06,
716
+ "loss": 2.1625,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.133739406779661,
721
+ "grad_norm": 4.25,
722
+ "learning_rate": 9.810711993500506e-06,
723
+ "loss": 2.1151,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.1350635593220339,
728
+ "grad_norm": 4.125,
729
+ "learning_rate": 9.804694896524215e-06,
730
+ "loss": 2.0776,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.1363877118644068,
735
+ "grad_norm": 4.15625,
736
+ "learning_rate": 9.79858555800603e-06,
737
+ "loss": 2.0534,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.13771186440677965,
742
+ "grad_norm": 3.953125,
743
+ "learning_rate": 9.792384095234312e-06,
744
+ "loss": 1.994,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.13903601694915255,
749
+ "grad_norm": 4.5,
750
+ "learning_rate": 9.78609062726605e-06,
751
+ "loss": 1.9252,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.1403601694915254,
756
+ "grad_norm": 3.90625,
757
+ "learning_rate": 9.779705274924563e-06,
758
+ "loss": 2.1531,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.1416843220338983,
763
+ "grad_norm": 3.828125,
764
+ "learning_rate": 9.773228160797187e-06,
765
+ "loss": 2.1426,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.1430084745762712,
770
+ "grad_norm": 3.796875,
771
+ "learning_rate": 9.766659409232918e-06,
772
+ "loss": 2.1032,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.14433262711864406,
777
+ "grad_norm": 4.09375,
778
+ "learning_rate": 9.759999146340031e-06,
779
+ "loss": 2.0202,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.14565677966101695,
784
+ "grad_norm": 4.59375,
785
+ "learning_rate": 9.753247499983649e-06,
786
+ "loss": 2.0955,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.14698093220338984,
791
+ "grad_norm": 4.03125,
792
+ "learning_rate": 9.7464045997833e-06,
793
+ "loss": 2.019,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.1483050847457627,
798
+ "grad_norm": 4.625,
799
+ "learning_rate": 9.739470577110417e-06,
800
+ "loss": 2.1751,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.1496292372881356,
805
+ "grad_norm": 4.125,
806
+ "learning_rate": 9.732445565085823e-06,
807
+ "loss": 2.0698,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.15095338983050846,
812
+ "grad_norm": 4.03125,
813
+ "learning_rate": 9.725329698577177e-06,
814
+ "loss": 2.1954,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.15227754237288135,
819
+ "grad_norm": 4.15625,
820
+ "learning_rate": 9.718123114196381e-06,
821
+ "loss": 2.1319,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.15360169491525424,
826
+ "grad_norm": 3.921875,
827
+ "learning_rate": 9.71082595029695e-06,
828
+ "loss": 2.0517,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.1549258474576271,
833
+ "grad_norm": 4.3125,
834
+ "learning_rate": 9.703438346971373e-06,
835
+ "loss": 2.243,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.15625,
840
+ "grad_norm": 4.15625,
841
+ "learning_rate": 9.69596044604841e-06,
842
+ "loss": 2.2454,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.1575741525423729,
847
+ "grad_norm": 4.0625,
848
+ "learning_rate": 9.688392391090374e-06,
849
+ "loss": 2.0891,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.15889830508474576,
854
+ "grad_norm": 4.3125,
855
+ "learning_rate": 9.680734327390374e-06,
856
+ "loss": 2.1075,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.16022245762711865,
861
+ "grad_norm": 4.125,
862
+ "learning_rate": 9.672986401969523e-06,
863
+ "loss": 2.0766,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.16154661016949154,
868
+ "grad_norm": 3.71875,
869
+ "learning_rate": 9.665148763574123e-06,
870
+ "loss": 1.9083,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.1628707627118644,
875
+ "grad_norm": 3.9375,
876
+ "learning_rate": 9.657221562672803e-06,
877
+ "loss": 1.9674,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.1641949152542373,
882
+ "grad_norm": 3.78125,
883
+ "learning_rate": 9.64920495145363e-06,
884
+ "loss": 2.2366,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.16551906779661016,
889
+ "grad_norm": 4.21875,
890
+ "learning_rate": 9.64109908382119e-06,
891
+ "loss": 2.1767,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.16684322033898305,
896
+ "grad_norm": 4.1875,
897
+ "learning_rate": 9.632904115393633e-06,
898
+ "loss": 2.0395,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.16816737288135594,
903
+ "grad_norm": 4.09375,
904
+ "learning_rate": 9.624620203499683e-06,
905
+ "loss": 2.2272,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.1694915254237288,
910
+ "grad_norm": 3.8125,
911
+ "learning_rate": 9.616247507175624e-06,
912
+ "loss": 2.094,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.1708156779661017,
917
+ "grad_norm": 3.78125,
918
+ "learning_rate": 9.607786187162234e-06,
919
+ "loss": 2.1253,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.1721398305084746,
924
+ "grad_norm": 4.40625,
925
+ "learning_rate": 9.599236405901715e-06,
926
+ "loss": 2.2173,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.17346398305084745,
931
+ "grad_norm": 3.90625,
932
+ "learning_rate": 9.590598327534563e-06,
933
+ "loss": 2.0337,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.17478813559322035,
938
+ "grad_norm": 4.0625,
939
+ "learning_rate": 9.581872117896423e-06,
940
+ "loss": 2.0791,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.1761122881355932,
945
+ "grad_norm": 3.859375,
946
+ "learning_rate": 9.573057944514897e-06,
947
+ "loss": 2.0358,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.1774364406779661,
952
+ "grad_norm": 4.28125,
953
+ "learning_rate": 9.56415597660634e-06,
954
+ "loss": 1.8235,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.178760593220339,
959
+ "grad_norm": 4.46875,
960
+ "learning_rate": 9.555166385072599e-06,
961
+ "loss": 2.154,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.18008474576271186,
966
+ "grad_norm": 3.953125,
967
+ "learning_rate": 9.546089342497743e-06,
968
+ "loss": 2.1079,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.18140889830508475,
973
+ "grad_norm": 3.84375,
974
+ "learning_rate": 9.536925023144742e-06,
975
+ "loss": 2.1117,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.18273305084745764,
980
+ "grad_norm": 4.0625,
981
+ "learning_rate": 9.527673602952123e-06,
982
+ "loss": 2.0338,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.1840572033898305,
987
+ "grad_norm": 4.09375,
988
+ "learning_rate": 9.518335259530594e-06,
989
+ "loss": 2.2235,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.1853813559322034,
994
+ "grad_norm": 4.84375,
995
+ "learning_rate": 9.508910172159635e-06,
996
+ "loss": 1.9275,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.18670550847457626,
1001
+ "grad_norm": 4.25,
1002
+ "learning_rate": 9.499398521784051e-06,
1003
+ "loss": 2.0549,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.18802966101694915,
1008
+ "grad_norm": 4.71875,
1009
+ "learning_rate": 9.489800491010507e-06,
1010
+ "loss": 1.9433,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.18935381355932204,
1015
+ "grad_norm": 3.96875,
1016
+ "learning_rate": 9.48011626410401e-06,
1017
+ "loss": 2.2499,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.1906779661016949,
1022
+ "grad_norm": 3.8125,
1023
+ "learning_rate": 9.470346026984387e-06,
1024
+ "loss": 2.1125,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.1920021186440678,
1029
+ "grad_norm": 4.34375,
1030
+ "learning_rate": 9.4604899672227e-06,
1031
+ "loss": 2.1017,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.1933262711864407,
1036
+ "grad_norm": 4.09375,
1037
+ "learning_rate": 9.450548274037652e-06,
1038
+ "loss": 2.038,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.19465042372881355,
1043
+ "grad_norm": 4.375,
1044
+ "learning_rate": 9.440521138291962e-06,
1045
+ "loss": 2.1801,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.19597457627118645,
1050
+ "grad_norm": 3.734375,
1051
+ "learning_rate": 9.430408752488687e-06,
1052
+ "loss": 2.1859,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.1972987288135593,
1057
+ "grad_norm": 4.34375,
1058
+ "learning_rate": 9.420211310767534e-06,
1059
+ "loss": 2.074,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.1986228813559322,
1064
+ "grad_norm": 4.8125,
1065
+ "learning_rate": 9.409929008901126e-06,
1066
+ "loss": 2.067,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.1999470338983051,
1071
+ "grad_norm": 3.671875,
1072
+ "learning_rate": 9.399562044291261e-06,
1073
+ "loss": 1.9712,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 0.20127118644067796,
1078
+ "grad_norm": 3.96875,
1079
+ "learning_rate": 9.389110615965102e-06,
1080
+ "loss": 2.0511,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 0.20259533898305085,
1085
+ "grad_norm": 4.0,
1086
+ "learning_rate": 9.378574924571362e-06,
1087
+ "loss": 2.0218,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 0.20391949152542374,
1092
+ "grad_norm": 4.09375,
1093
+ "learning_rate": 9.367955172376462e-06,
1094
+ "loss": 1.9664,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 0.2052436440677966,
1099
+ "grad_norm": 3.859375,
1100
+ "learning_rate": 9.35725156326063e-06,
1101
+ "loss": 2.0343,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 0.2065677966101695,
1106
+ "grad_norm": 3.984375,
1107
+ "learning_rate": 9.346464302714008e-06,
1108
+ "loss": 2.2163,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 0.20789194915254236,
1113
+ "grad_norm": 3.609375,
1114
+ "learning_rate": 9.335593597832686e-06,
1115
+ "loss": 2.2098,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 0.20921610169491525,
1120
+ "grad_norm": 3.90625,
1121
+ "learning_rate": 9.324639657314742e-06,
1122
+ "loss": 2.0961,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 0.21054025423728814,
1127
+ "grad_norm": 3.984375,
1128
+ "learning_rate": 9.313602691456224e-06,
1129
+ "loss": 2.1141,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 0.211864406779661,
1134
+ "grad_norm": 3.96875,
1135
+ "learning_rate": 9.302482912147126e-06,
1136
+ "loss": 2.0155,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 0.2131885593220339,
1141
+ "grad_norm": 3.953125,
1142
+ "learning_rate": 9.291280532867301e-06,
1143
+ "loss": 1.9736,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 0.2145127118644068,
1148
+ "grad_norm": 3.734375,
1149
+ "learning_rate": 9.279995768682383e-06,
1150
+ "loss": 2.0853,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 0.21583686440677965,
1155
+ "grad_norm": 4.125,
1156
+ "learning_rate": 9.268628836239646e-06,
1157
+ "loss": 2.1189,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 0.21716101694915255,
1162
+ "grad_norm": 3.796875,
1163
+ "learning_rate": 9.257179953763846e-06,
1164
+ "loss": 2.0597,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 0.2184851694915254,
1169
+ "grad_norm": 4.21875,
1170
+ "learning_rate": 9.245649341053033e-06,
1171
+ "loss": 2.0406,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 0.2198093220338983,
1176
+ "grad_norm": 3.96875,
1177
+ "learning_rate": 9.234037219474332e-06,
1178
+ "loss": 2.0314,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 0.2211334745762712,
1183
+ "grad_norm": 4.0,
1184
+ "learning_rate": 9.222343811959694e-06,
1185
+ "loss": 2.1392,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 0.22245762711864406,
1190
+ "grad_norm": 3.78125,
1191
+ "learning_rate": 9.21056934300161e-06,
1192
+ "loss": 2.0291,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 0.22378177966101695,
1197
+ "grad_norm": 3.78125,
1198
+ "learning_rate": 9.198714038648811e-06,
1199
+ "loss": 2.1251,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 0.22510593220338984,
1204
+ "grad_norm": 4.25,
1205
+ "learning_rate": 9.186778126501916e-06,
1206
+ "loss": 1.9912,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 0.2264300847457627,
1211
+ "grad_norm": 4.0,
1212
+ "learning_rate": 9.17476183570908e-06,
1213
+ "loss": 2.0754,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 0.2277542372881356,
1218
+ "grad_norm": 4.15625,
1219
+ "learning_rate": 9.162665396961573e-06,
1220
+ "loss": 2.0376,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 0.22907838983050846,
1225
+ "grad_norm": 4.15625,
1226
+ "learning_rate": 9.150489042489368e-06,
1227
+ "loss": 1.984,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 0.23040254237288135,
1232
+ "grad_norm": 3.984375,
1233
+ "learning_rate": 9.138233006056679e-06,
1234
+ "loss": 2.0155,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 0.23172669491525424,
1239
+ "grad_norm": 4.125,
1240
+ "learning_rate": 9.125897522957461e-06,
1241
+ "loss": 2.1034,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 0.2330508474576271,
1246
+ "grad_norm": 3.84375,
1247
+ "learning_rate": 9.113482830010918e-06,
1248
+ "loss": 2.1072,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 0.234375,
1253
+ "grad_norm": 5.28125,
1254
+ "learning_rate": 9.100989165556928e-06,
1255
+ "loss": 2.1256,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 0.2356991525423729,
1260
+ "grad_norm": 4.3125,
1261
+ "learning_rate": 9.088416769451485e-06,
1262
+ "loss": 2.0479,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 0.23702330508474576,
1267
+ "grad_norm": 4.0,
1268
+ "learning_rate": 9.075765883062093e-06,
1269
+ "loss": 2.075,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 0.23834745762711865,
1274
+ "grad_norm": 3.8125,
1275
+ "learning_rate": 9.063036749263127e-06,
1276
+ "loss": 1.9578,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 0.23967161016949154,
1281
+ "grad_norm": 3.796875,
1282
+ "learning_rate": 9.050229612431168e-06,
1283
+ "loss": 2.2268,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 0.2409957627118644,
1288
+ "grad_norm": 4.0625,
1289
+ "learning_rate": 9.037344718440321e-06,
1290
+ "loss": 2.2065,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 0.2423199152542373,
1295
+ "grad_norm": 4.75,
1296
+ "learning_rate": 9.02438231465749e-06,
1297
+ "loss": 1.9338,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 0.24364406779661016,
1302
+ "grad_norm": 4.0625,
1303
+ "learning_rate": 9.011342649937623e-06,
1304
+ "loss": 2.0992,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 0.24496822033898305,
1309
+ "grad_norm": 4.625,
1310
+ "learning_rate": 8.99822597461894e-06,
1311
+ "loss": 2.0273,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 0.24629237288135594,
1316
+ "grad_norm": 4.59375,
1317
+ "learning_rate": 8.985032540518133e-06,
1318
+ "loss": 2.0654,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 0.2476165254237288,
1323
+ "grad_norm": 4.34375,
1324
+ "learning_rate": 8.971762600925519e-06,
1325
+ "loss": 2.1202,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 0.2489406779661017,
1330
+ "grad_norm": 3.75,
1331
+ "learning_rate": 8.958416410600188e-06,
1332
+ "loss": 2.0589,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 0.2502648305084746,
1337
+ "grad_norm": 4.0625,
1338
+ "learning_rate": 8.944994225765104e-06,
1339
+ "loss": 1.9044,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 0.2515889830508475,
1344
+ "grad_norm": 4.375,
1345
+ "learning_rate": 8.931496304102192e-06,
1346
+ "loss": 2.0083,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 0.2529131355932203,
1351
+ "grad_norm": 3.859375,
1352
+ "learning_rate": 8.917922904747385e-06,
1353
+ "loss": 1.9487,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 0.2542372881355932,
1358
+ "grad_norm": 3.734375,
1359
+ "learning_rate": 8.904274288285657e-06,
1360
+ "loss": 1.9682,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 0.2555614406779661,
1365
+ "grad_norm": 4.21875,
1366
+ "learning_rate": 8.890550716746013e-06,
1367
+ "loss": 1.8554,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 0.256885593220339,
1372
+ "grad_norm": 3.921875,
1373
+ "learning_rate": 8.876752453596462e-06,
1374
+ "loss": 2.0785,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 0.2582097457627119,
1379
+ "grad_norm": 3.796875,
1380
+ "learning_rate": 8.862879763738962e-06,
1381
+ "loss": 2.0384,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 0.2595338983050847,
1386
+ "grad_norm": 3.828125,
1387
+ "learning_rate": 8.84893291350432e-06,
1388
+ "loss": 2.163,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 0.2608580508474576,
1393
+ "grad_norm": 4.125,
1394
+ "learning_rate": 8.834912170647102e-06,
1395
+ "loss": 2.0237,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 0.2621822033898305,
1400
+ "grad_norm": 4.0625,
1401
+ "learning_rate": 8.820817804340471e-06,
1402
+ "loss": 2.0215,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 0.2635063559322034,
1407
+ "grad_norm": 3.671875,
1408
+ "learning_rate": 8.806650085171036e-06,
1409
+ "loss": 2.0454,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 0.2648305084745763,
1414
+ "grad_norm": 3.78125,
1415
+ "learning_rate": 8.792409285133644e-06,
1416
+ "loss": 2.0006,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 0.2648305084745763,
1421
+ "eval_AskDoctor-Chinese_loss": 2.021162986755371,
1422
+ "eval_AskDoctor-Chinese_runtime": 16.0254,
1423
+ "eval_AskDoctor-Chinese_samples_per_second": 1.872,
1424
+ "eval_AskDoctor-Chinese_steps_per_second": 1.872,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.2661546610169492,
1429
+ "grad_norm": 3.921875,
1430
+ "learning_rate": 8.778095677626164e-06,
1431
+ "loss": 1.9454,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.267478813559322,
1436
+ "grad_norm": 3.765625,
1437
+ "learning_rate": 8.763709537444241e-06,
1438
+ "loss": 2.1055,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.2688029661016949,
1443
+ "grad_norm": 4.59375,
1444
+ "learning_rate": 8.749251140776016e-06,
1445
+ "loss": 1.9506,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.2701271186440678,
1450
+ "grad_norm": 3.9375,
1451
+ "learning_rate": 8.734720765196826e-06,
1452
+ "loss": 2.2382,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.2714512711864407,
1457
+ "grad_norm": 4.96875,
1458
+ "learning_rate": 8.720118689663872e-06,
1459
+ "loss": 1.9558,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.2727754237288136,
1464
+ "grad_norm": 3.84375,
1465
+ "learning_rate": 8.705445194510868e-06,
1466
+ "loss": 2.0589,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.2740995762711864,
1471
+ "grad_norm": 4.84375,
1472
+ "learning_rate": 8.690700561442658e-06,
1473
+ "loss": 1.8821,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.2754237288135593,
1478
+ "grad_norm": 3.84375,
1479
+ "learning_rate": 8.675885073529802e-06,
1480
+ "loss": 1.9863,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.2767478813559322,
1485
+ "grad_norm": 3.84375,
1486
+ "learning_rate": 8.660999015203152e-06,
1487
+ "loss": 2.0464,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.2780720338983051,
1492
+ "grad_norm": 3.9375,
1493
+ "learning_rate": 8.64604267224838e-06,
1494
+ "loss": 2.1284,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.279396186440678,
1499
+ "grad_norm": 4.21875,
1500
+ "learning_rate": 8.631016331800501e-06,
1501
+ "loss": 1.9782,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.2807203389830508,
1506
+ "grad_norm": 3.84375,
1507
+ "learning_rate": 8.615920282338355e-06,
1508
+ "loss": 2.0504,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.2820444915254237,
1513
+ "grad_norm": 3.859375,
1514
+ "learning_rate": 8.600754813679072e-06,
1515
+ "loss": 2.0384,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.2833686440677966,
1520
+ "grad_norm": 4.1875,
1521
+ "learning_rate": 8.585520216972503e-06,
1522
+ "loss": 2.0057,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.2846927966101695,
1527
+ "grad_norm": 3.765625,
1528
+ "learning_rate": 8.570216784695637e-06,
1529
+ "loss": 2.1141,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.2860169491525424,
1534
+ "grad_norm": 4.1875,
1535
+ "learning_rate": 8.55484481064698e-06,
1536
+ "loss": 1.9975,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.2873411016949153,
1541
+ "grad_norm": 4.03125,
1542
+ "learning_rate": 8.539404589940924e-06,
1543
+ "loss": 1.9758,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.2886652542372881,
1548
+ "grad_norm": 6.0625,
1549
+ "learning_rate": 8.52389641900206e-06,
1550
+ "loss": 1.8848,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.289989406779661,
1555
+ "grad_norm": 3.734375,
1556
+ "learning_rate": 8.50832059555952e-06,
1557
+ "loss": 2.09,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.2913135593220339,
1562
+ "grad_norm": 3.984375,
1563
+ "learning_rate": 8.492677418641231e-06,
1564
+ "loss": 1.824,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.2926377118644068,
1569
+ "grad_norm": 3.90625,
1570
+ "learning_rate": 8.476967188568187e-06,
1571
+ "loss": 2.1443,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.2939618644067797,
1576
+ "grad_norm": 3.796875,
1577
+ "learning_rate": 8.461190206948691e-06,
1578
+ "loss": 2.1238,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.2952860169491525,
1583
+ "grad_norm": 4.0625,
1584
+ "learning_rate": 8.445346776672546e-06,
1585
+ "loss": 2.1187,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.2966101694915254,
1590
+ "grad_norm": 3.65625,
1591
+ "learning_rate": 8.429437201905254e-06,
1592
+ "loss": 2.2054,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.2979343220338983,
1597
+ "grad_norm": 3.5,
1598
+ "learning_rate": 8.413461788082175e-06,
1599
+ "loss": 2.0788,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.2992584745762712,
1604
+ "grad_norm": 3.5625,
1605
+ "learning_rate": 8.39742084190266e-06,
1606
+ "loss": 2.1441,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.3005826271186441,
1611
+ "grad_norm": 7.3125,
1612
+ "learning_rate": 8.38131467132416e-06,
1613
+ "loss": 1.9429,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.3019067796610169,
1618
+ "grad_norm": 7.375,
1619
+ "learning_rate": 8.365143585556326e-06,
1620
+ "loss": 1.9466,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.3032309322033898,
1625
+ "grad_norm": 4.625,
1626
+ "learning_rate": 8.348907895055055e-06,
1627
+ "loss": 1.9793,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.3045550847457627,
1632
+ "grad_norm": 4.09375,
1633
+ "learning_rate": 8.332607911516545e-06,
1634
+ "loss": 2.0855,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.3058792372881356,
1639
+ "grad_norm": 4.125,
1640
+ "learning_rate": 8.316243947871306e-06,
1641
+ "loss": 2.1595,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.3072033898305085,
1646
+ "grad_norm": 3.953125,
1647
+ "learning_rate": 8.299816318278146e-06,
1648
+ "loss": 1.9467,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.3085275423728814,
1653
+ "grad_norm": 3.75,
1654
+ "learning_rate": 8.283325338118154e-06,
1655
+ "loss": 1.9687,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.3098516949152542,
1660
+ "grad_norm": 3.875,
1661
+ "learning_rate": 8.266771323988624e-06,
1662
+ "loss": 2.0397,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.3111758474576271,
1667
+ "grad_norm": 3.890625,
1668
+ "learning_rate": 8.250154593697002e-06,
1669
+ "loss": 2.1581,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.3125,
1674
+ "grad_norm": 3.640625,
1675
+ "learning_rate": 8.233475466254766e-06,
1676
+ "loss": 1.9687,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.3138241525423729,
1681
+ "grad_norm": 3.828125,
1682
+ "learning_rate": 8.216734261871305e-06,
1683
+ "loss": 2.081,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.3151483050847458,
1688
+ "grad_norm": 3.984375,
1689
+ "learning_rate": 8.199931301947782e-06,
1690
+ "loss": 1.9637,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.3164724576271186,
1695
+ "grad_norm": 6.96875,
1696
+ "learning_rate": 8.183066909070946e-06,
1697
+ "loss": 1.9271,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.3177966101694915,
1702
+ "grad_norm": 3.9375,
1703
+ "learning_rate": 8.16614140700696e-06,
1704
+ "loss": 1.9426,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.3191207627118644,
1709
+ "grad_norm": 4.03125,
1710
+ "learning_rate": 8.149155120695163e-06,
1711
+ "loss": 1.8951,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.3204449152542373,
1716
+ "grad_norm": 3.84375,
1717
+ "learning_rate": 8.132108376241849e-06,
1718
+ "loss": 2.1779,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.3217690677966102,
1723
+ "grad_norm": 3.921875,
1724
+ "learning_rate": 8.115001500914e-06,
1725
+ "loss": 2.1942,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.3230932203389831,
1730
+ "grad_norm": 3.90625,
1731
+ "learning_rate": 8.097834823133002e-06,
1732
+ "loss": 1.9011,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.3244173728813559,
1737
+ "grad_norm": 4.15625,
1738
+ "learning_rate": 8.08060867246834e-06,
1739
+ "loss": 1.9409,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.3257415254237288,
1744
+ "grad_norm": 4.96875,
1745
+ "learning_rate": 8.063323379631274e-06,
1746
+ "loss": 1.9138,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.3270656779661017,
1751
+ "grad_norm": 3.875,
1752
+ "learning_rate": 8.045979276468486e-06,
1753
+ "loss": 2.182,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.3283898305084746,
1758
+ "grad_norm": 3.90625,
1759
+ "learning_rate": 8.028576695955711e-06,
1760
+ "loss": 2.0034,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.3297139830508475,
1765
+ "grad_norm": 3.6875,
1766
+ "learning_rate": 8.011115972191347e-06,
1767
+ "loss": 2.1779,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.3310381355932203,
1772
+ "grad_norm": 5.25,
1773
+ "learning_rate": 7.993597440390035e-06,
1774
+ "loss": 1.8994,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.3323622881355932,
1779
+ "grad_norm": 3.765625,
1780
+ "learning_rate": 7.976021436876232e-06,
1781
+ "loss": 2.0865,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.3336864406779661,
1786
+ "grad_norm": 3.90625,
1787
+ "learning_rate": 7.958388299077739e-06,
1788
+ "loss": 2.1092,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.335010593220339,
1793
+ "grad_norm": 4.0,
1794
+ "learning_rate": 7.940698365519246e-06,
1795
+ "loss": 2.0966,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.3363347457627119,
1800
+ "grad_norm": 3.625,
1801
+ "learning_rate": 7.92295197581581e-06,
1802
+ "loss": 2.0216,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.3376588983050847,
1807
+ "grad_norm": 3.796875,
1808
+ "learning_rate": 7.905149470666348e-06,
1809
+ "loss": 2.036,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.3389830508474576,
1814
+ "grad_norm": 4.625,
1815
+ "learning_rate": 7.887291191847098e-06,
1816
+ "loss": 2.0037,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.3403072033898305,
1821
+ "grad_norm": 4.0625,
1822
+ "learning_rate": 7.869377482205042e-06,
1823
+ "loss": 2.0473,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.3416313559322034,
1828
+ "grad_norm": 4.125,
1829
+ "learning_rate": 7.851408685651342e-06,
1830
+ "loss": 2.0279,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.3429555084745763,
1835
+ "grad_norm": 3.9375,
1836
+ "learning_rate": 7.833385147154733e-06,
1837
+ "loss": 2.1209,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.3442796610169492,
1842
+ "grad_norm": 3.96875,
1843
+ "learning_rate": 7.815307212734888e-06,
1844
+ "loss": 2.0669,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.345603813559322,
1849
+ "grad_norm": 3.71875,
1850
+ "learning_rate": 7.797175229455793e-06,
1851
+ "loss": 2.033,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.3469279661016949,
1856
+ "grad_norm": 4.46875,
1857
+ "learning_rate": 7.778989545419068e-06,
1858
+ "loss": 2.0184,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.3482521186440678,
1863
+ "grad_norm": 3.765625,
1864
+ "learning_rate": 7.7607505097573e-06,
1865
+ "loss": 2.2567,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.3495762711864407,
1870
+ "grad_norm": 3.6875,
1871
+ "learning_rate": 7.742458472627321e-06,
1872
+ "loss": 2.0145,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.3509004237288136,
1877
+ "grad_norm": 3.953125,
1878
+ "learning_rate": 7.724113785203506e-06,
1879
+ "loss": 1.94,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.3522245762711864,
1884
+ "grad_norm": 3.78125,
1885
+ "learning_rate": 7.705716799671019e-06,
1886
+ "loss": 2.0266,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.3535487288135593,
1891
+ "grad_norm": 3.953125,
1892
+ "learning_rate": 7.687267869219052e-06,
1893
+ "loss": 1.9502,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.3548728813559322,
1898
+ "grad_norm": 3.953125,
1899
+ "learning_rate": 7.668767348034044e-06,
1900
+ "loss": 2.1102,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.3561970338983051,
1905
+ "grad_norm": 3.90625,
1906
+ "learning_rate": 7.650215591292888e-06,
1907
+ "loss": 1.8979,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.357521186440678,
1912
+ "grad_norm": 4.125,
1913
+ "learning_rate": 7.631612955156111e-06,
1914
+ "loss": 1.9134,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.3588453389830508,
1919
+ "grad_norm": 3.84375,
1920
+ "learning_rate": 7.6129597967610244e-06,
1921
+ "loss": 2.0089,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.3601694915254237,
1926
+ "grad_norm": 3.890625,
1927
+ "learning_rate": 7.594256474214883e-06,
1928
+ "loss": 1.9536,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.3614936440677966,
1933
+ "grad_norm": 3.984375,
1934
+ "learning_rate": 7.5755033465880024e-06,
1935
+ "loss": 2.0965,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.3628177966101695,
1940
+ "grad_norm": 4.28125,
1941
+ "learning_rate": 7.556700773906866e-06,
1942
+ "loss": 2.0323,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.3641419491525424,
1947
+ "grad_norm": 3.8125,
1948
+ "learning_rate": 7.537849117147212e-06,
1949
+ "loss": 2.0372,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.3654661016949153,
1954
+ "grad_norm": 3.640625,
1955
+ "learning_rate": 7.5189487382271095e-06,
1956
+ "loss": 2.0669,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.3667902542372881,
1961
+ "grad_norm": 3.703125,
1962
+ "learning_rate": 7.500000000000001e-06,
1963
+ "loss": 1.9949,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.368114406779661,
1968
+ "grad_norm": 3.703125,
1969
+ "learning_rate": 7.481003266247745e-06,
1970
+ "loss": 2.1448,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.3694385593220339,
1975
+ "grad_norm": 3.90625,
1976
+ "learning_rate": 7.461958901673625e-06,
1977
+ "loss": 2.0343,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.3707627118644068,
1982
+ "grad_norm": 4.25,
1983
+ "learning_rate": 7.4428672718953535e-06,
1984
+ "loss": 2.0603,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.3720868644067797,
1989
+ "grad_norm": 3.640625,
1990
+ "learning_rate": 7.4237287434380485e-06,
1991
+ "loss": 1.9779,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.3734110169491525,
1996
+ "grad_norm": 3.78125,
1997
+ "learning_rate": 7.404543683727201e-06,
1998
+ "loss": 2.1302,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.3747351694915254,
2003
+ "grad_norm": 6.15625,
2004
+ "learning_rate": 7.385312461081616e-06,
2005
+ "loss": 1.9677,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.3760593220338983,
2010
+ "grad_norm": 7.6875,
2011
+ "learning_rate": 7.366035444706346e-06,
2012
+ "loss": 1.969,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.3773834745762712,
2017
+ "grad_norm": 3.953125,
2018
+ "learning_rate": 7.346713004685602e-06,
2019
+ "loss": 2.0783,
2020
+ "step": 285
2021
+ },
2022
+ {
2023
+ "epoch": 0.3787076271186441,
2024
+ "grad_norm": 3.875,
2025
+ "learning_rate": 7.3273455119756445e-06,
2026
+ "loss": 2.134,
2027
+ "step": 286
2028
+ },
2029
+ {
2030
+ "epoch": 0.3800317796610169,
2031
+ "grad_norm": 4.125,
2032
+ "learning_rate": 7.307933338397667e-06,
2033
+ "loss": 2.0337,
2034
+ "step": 287
2035
+ },
2036
+ {
2037
+ "epoch": 0.3813559322033898,
2038
+ "grad_norm": 3.59375,
2039
+ "learning_rate": 7.288476856630656e-06,
2040
+ "loss": 2.2021,
2041
+ "step": 288
2042
+ },
2043
+ {
2044
+ "epoch": 0.3826800847457627,
2045
+ "grad_norm": 3.765625,
2046
+ "learning_rate": 7.268976440204236e-06,
2047
+ "loss": 2.0299,
2048
+ "step": 289
2049
+ },
2050
+ {
2051
+ "epoch": 0.3840042372881356,
2052
+ "grad_norm": 4.15625,
2053
+ "learning_rate": 7.249432463491498e-06,
2054
+ "loss": 1.9574,
2055
+ "step": 290
2056
+ },
2057
+ {
2058
+ "epoch": 0.3853283898305085,
2059
+ "grad_norm": 3.734375,
2060
+ "learning_rate": 7.229845301701811e-06,
2061
+ "loss": 2.2027,
2062
+ "step": 291
2063
+ },
2064
+ {
2065
+ "epoch": 0.3866525423728814,
2066
+ "grad_norm": 3.578125,
2067
+ "learning_rate": 7.2102153308736225e-06,
2068
+ "loss": 2.1389,
2069
+ "step": 292
2070
+ },
2071
+ {
2072
+ "epoch": 0.3879766949152542,
2073
+ "grad_norm": 3.796875,
2074
+ "learning_rate": 7.190542927867234e-06,
2075
+ "loss": 1.8233,
2076
+ "step": 293
2077
+ },
2078
+ {
2079
+ "epoch": 0.3893008474576271,
2080
+ "grad_norm": 3.984375,
2081
+ "learning_rate": 7.1708284703575734e-06,
2082
+ "loss": 1.9075,
2083
+ "step": 294
2084
+ },
2085
+ {
2086
+ "epoch": 0.390625,
2087
+ "grad_norm": 4.5625,
2088
+ "learning_rate": 7.1510723368269376e-06,
2089
+ "loss": 1.8944,
2090
+ "step": 295
2091
+ },
2092
+ {
2093
+ "epoch": 0.3919491525423729,
2094
+ "grad_norm": 4.0,
2095
+ "learning_rate": 7.131274906557725e-06,
2096
+ "loss": 2.1448,
2097
+ "step": 296
2098
+ },
2099
+ {
2100
+ "epoch": 0.3932733050847458,
2101
+ "grad_norm": 4.34375,
2102
+ "learning_rate": 7.111436559625162e-06,
2103
+ "loss": 2.0403,
2104
+ "step": 297
2105
+ },
2106
+ {
2107
+ "epoch": 0.3945974576271186,
2108
+ "grad_norm": 3.90625,
2109
+ "learning_rate": 7.091557676890001e-06,
2110
+ "loss": 1.982,
2111
+ "step": 298
2112
+ },
2113
+ {
2114
+ "epoch": 0.3959216101694915,
2115
+ "grad_norm": 4.5,
2116
+ "learning_rate": 7.0716386399912075e-06,
2117
+ "loss": 2.1055,
2118
+ "step": 299
2119
+ },
2120
+ {
2121
+ "epoch": 0.3972457627118644,
2122
+ "grad_norm": 3.515625,
2123
+ "learning_rate": 7.051679831338638e-06,
2124
+ "loss": 1.8751,
2125
+ "step": 300
2126
+ },
2127
+ {
2128
+ "epoch": 0.3985699152542373,
2129
+ "grad_norm": 3.765625,
2130
+ "learning_rate": 7.03168163410569e-06,
2131
+ "loss": 2.0518,
2132
+ "step": 301
2133
+ },
2134
+ {
2135
+ "epoch": 0.3998940677966102,
2136
+ "grad_norm": 3.8125,
2137
+ "learning_rate": 7.0116444322219575e-06,
2138
+ "loss": 1.9739,
2139
+ "step": 302
2140
+ },
2141
+ {
2142
+ "epoch": 0.4012182203389831,
2143
+ "grad_norm": 3.578125,
2144
+ "learning_rate": 6.991568610365851e-06,
2145
+ "loss": 2.0927,
2146
+ "step": 303
2147
+ },
2148
+ {
2149
+ "epoch": 0.4025423728813559,
2150
+ "grad_norm": 4.4375,
2151
+ "learning_rate": 6.971454553957216e-06,
2152
+ "loss": 2.0478,
2153
+ "step": 304
2154
+ },
2155
+ {
2156
+ "epoch": 0.4038665254237288,
2157
+ "grad_norm": 4.15625,
2158
+ "learning_rate": 6.95130264914993e-06,
2159
+ "loss": 2.0242,
2160
+ "step": 305
2161
+ },
2162
+ {
2163
+ "epoch": 0.4051906779661017,
2164
+ "grad_norm": 3.65625,
2165
+ "learning_rate": 6.931113282824498e-06,
2166
+ "loss": 2.1597,
2167
+ "step": 306
2168
+ },
2169
+ {
2170
+ "epoch": 0.4065148305084746,
2171
+ "grad_norm": 3.734375,
2172
+ "learning_rate": 6.910886842580612e-06,
2173
+ "loss": 1.9689,
2174
+ "step": 307
2175
+ },
2176
+ {
2177
+ "epoch": 0.4078389830508475,
2178
+ "grad_norm": 3.640625,
2179
+ "learning_rate": 6.890623716729724e-06,
2180
+ "loss": 2.1267,
2181
+ "step": 308
2182
+ },
2183
+ {
2184
+ "epoch": 0.4091631355932203,
2185
+ "grad_norm": 3.796875,
2186
+ "learning_rate": 6.870324294287578e-06,
2187
+ "loss": 2.0548,
2188
+ "step": 309
2189
+ },
2190
+ {
2191
+ "epoch": 0.4104872881355932,
2192
+ "grad_norm": 3.703125,
2193
+ "learning_rate": 6.8499889649667516e-06,
2194
+ "loss": 2.2051,
2195
+ "step": 310
2196
+ },
2197
+ {
2198
+ "epoch": 0.4118114406779661,
2199
+ "grad_norm": 3.765625,
2200
+ "learning_rate": 6.829618119169169e-06,
2201
+ "loss": 1.9724,
2202
+ "step": 311
2203
+ },
2204
+ {
2205
+ "epoch": 0.413135593220339,
2206
+ "grad_norm": 4.09375,
2207
+ "learning_rate": 6.809212147978605e-06,
2208
+ "loss": 2.0979,
2209
+ "step": 312
2210
+ },
2211
+ {
2212
+ "epoch": 0.4144597457627119,
2213
+ "grad_norm": 3.953125,
2214
+ "learning_rate": 6.788771443153183e-06,
2215
+ "loss": 2.1663,
2216
+ "step": 313
2217
+ },
2218
+ {
2219
+ "epoch": 0.4157838983050847,
2220
+ "grad_norm": 4.03125,
2221
+ "learning_rate": 6.768296397117848e-06,
2222
+ "loss": 1.9478,
2223
+ "step": 314
2224
+ },
2225
+ {
2226
+ "epoch": 0.4171080508474576,
2227
+ "grad_norm": 4.03125,
2228
+ "learning_rate": 6.7477874029568345e-06,
2229
+ "loss": 2.0767,
2230
+ "step": 315
2231
+ },
2232
+ {
2233
+ "epoch": 0.4184322033898305,
2234
+ "grad_norm": 5.875,
2235
+ "learning_rate": 6.7272448544061184e-06,
2236
+ "loss": 2.0509,
2237
+ "step": 316
2238
+ },
2239
+ {
2240
+ "epoch": 0.4197563559322034,
2241
+ "grad_norm": 3.921875,
2242
+ "learning_rate": 6.706669145845863e-06,
2243
+ "loss": 2.0612,
2244
+ "step": 317
2245
+ },
2246
+ {
2247
+ "epoch": 0.4210805084745763,
2248
+ "grad_norm": 5.09375,
2249
+ "learning_rate": 6.686060672292847e-06,
2250
+ "loss": 1.9404,
2251
+ "step": 318
2252
+ },
2253
+ {
2254
+ "epoch": 0.4224046610169492,
2255
+ "grad_norm": 4.0,
2256
+ "learning_rate": 6.6654198293928695e-06,
2257
+ "loss": 2.0939,
2258
+ "step": 319
2259
+ },
2260
+ {
2261
+ "epoch": 0.423728813559322,
2262
+ "grad_norm": 4.84375,
2263
+ "learning_rate": 6.6447470134131685e-06,
2264
+ "loss": 1.9003,
2265
+ "step": 320
2266
+ },
2267
+ {
2268
+ "epoch": 0.4250529661016949,
2269
+ "grad_norm": 4.0,
2270
+ "learning_rate": 6.624042621234814e-06,
2271
+ "loss": 2.1884,
2272
+ "step": 321
2273
+ },
2274
+ {
2275
+ "epoch": 0.4263771186440678,
2276
+ "grad_norm": 3.734375,
2277
+ "learning_rate": 6.603307050345069e-06,
2278
+ "loss": 1.9816,
2279
+ "step": 322
2280
+ },
2281
+ {
2282
+ "epoch": 0.4277012711864407,
2283
+ "grad_norm": 3.828125,
2284
+ "learning_rate": 6.5825406988297815e-06,
2285
+ "loss": 1.9909,
2286
+ "step": 323
2287
+ },
2288
+ {
2289
+ "epoch": 0.4290254237288136,
2290
+ "grad_norm": 4.03125,
2291
+ "learning_rate": 6.561743965365732e-06,
2292
+ "loss": 2.1602,
2293
+ "step": 324
2294
+ },
2295
+ {
2296
+ "epoch": 0.4303495762711864,
2297
+ "grad_norm": 3.625,
2298
+ "learning_rate": 6.540917249212976e-06,
2299
+ "loss": 2.2546,
2300
+ "step": 325
2301
+ },
2302
+ {
2303
+ "epoch": 0.4316737288135593,
2304
+ "grad_norm": 3.734375,
2305
+ "learning_rate": 6.520060950207186e-06,
2306
+ "loss": 2.1109,
2307
+ "step": 326
2308
+ },
2309
+ {
2310
+ "epoch": 0.4329978813559322,
2311
+ "grad_norm": 3.6875,
2312
+ "learning_rate": 6.4991754687519695e-06,
2313
+ "loss": 1.9424,
2314
+ "step": 327
2315
+ },
2316
+ {
2317
+ "epoch": 0.4343220338983051,
2318
+ "grad_norm": 4.03125,
2319
+ "learning_rate": 6.478261205811188e-06,
2320
+ "loss": 1.9637,
2321
+ "step": 328
2322
+ },
2323
+ {
2324
+ "epoch": 0.435646186440678,
2325
+ "grad_norm": 4.1875,
2326
+ "learning_rate": 6.457318562901257e-06,
2327
+ "loss": 1.9564,
2328
+ "step": 329
2329
+ },
2330
+ {
2331
+ "epoch": 0.4369703389830508,
2332
+ "grad_norm": 3.734375,
2333
+ "learning_rate": 6.43634794208343e-06,
2334
+ "loss": 2.1901,
2335
+ "step": 330
2336
+ },
2337
+ {
2338
+ "epoch": 0.4382944915254237,
2339
+ "grad_norm": 4.0625,
2340
+ "learning_rate": 6.415349745956093e-06,
2341
+ "loss": 1.8634,
2342
+ "step": 331
2343
+ },
2344
+ {
2345
+ "epoch": 0.4396186440677966,
2346
+ "grad_norm": 4.1875,
2347
+ "learning_rate": 6.394324377647028e-06,
2348
+ "loss": 1.9514,
2349
+ "step": 332
2350
+ },
2351
+ {
2352
+ "epoch": 0.4409427966101695,
2353
+ "grad_norm": 3.953125,
2354
+ "learning_rate": 6.373272240805668e-06,
2355
+ "loss": 1.8502,
2356
+ "step": 333
2357
+ },
2358
+ {
2359
+ "epoch": 0.4422669491525424,
2360
+ "grad_norm": 3.78125,
2361
+ "learning_rate": 6.35219373959536e-06,
2362
+ "loss": 1.9593,
2363
+ "step": 334
2364
+ },
2365
+ {
2366
+ "epoch": 0.4435911016949153,
2367
+ "grad_norm": 3.765625,
2368
+ "learning_rate": 6.331089278685599e-06,
2369
+ "loss": 2.057,
2370
+ "step": 335
2371
+ },
2372
+ {
2373
+ "epoch": 0.4449152542372881,
2374
+ "grad_norm": 4.84375,
2375
+ "learning_rate": 6.30995926324426e-06,
2376
+ "loss": 1.9964,
2377
+ "step": 336
2378
+ },
2379
+ {
2380
+ "epoch": 0.446239406779661,
2381
+ "grad_norm": 3.796875,
2382
+ "learning_rate": 6.2888040989298136e-06,
2383
+ "loss": 2.2322,
2384
+ "step": 337
2385
+ },
2386
+ {
2387
+ "epoch": 0.4475635593220339,
2388
+ "grad_norm": 3.84375,
2389
+ "learning_rate": 6.267624191883551e-06,
2390
+ "loss": 1.9032,
2391
+ "step": 338
2392
+ },
2393
+ {
2394
+ "epoch": 0.4488877118644068,
2395
+ "grad_norm": 3.90625,
2396
+ "learning_rate": 6.246419948721777e-06,
2397
+ "loss": 2.026,
2398
+ "step": 339
2399
+ },
2400
+ {
2401
+ "epoch": 0.4502118644067797,
2402
+ "grad_norm": 3.625,
2403
+ "learning_rate": 6.2251917765280056e-06,
2404
+ "loss": 2.1106,
2405
+ "step": 340
2406
+ },
2407
+ {
2408
+ "epoch": 0.4515360169491525,
2409
+ "grad_norm": 3.859375,
2410
+ "learning_rate": 6.203940082845144e-06,
2411
+ "loss": 1.8843,
2412
+ "step": 341
2413
+ },
2414
+ {
2415
+ "epoch": 0.4528601694915254,
2416
+ "grad_norm": 4.0,
2417
+ "learning_rate": 6.182665275667674e-06,
2418
+ "loss": 1.8529,
2419
+ "step": 342
2420
+ },
2421
+ {
2422
+ "epoch": 0.4541843220338983,
2423
+ "grad_norm": 3.859375,
2424
+ "learning_rate": 6.161367763433812e-06,
2425
+ "loss": 2.0598,
2426
+ "step": 343
2427
+ },
2428
+ {
2429
+ "epoch": 0.4555084745762712,
2430
+ "grad_norm": 3.859375,
2431
+ "learning_rate": 6.140047955017672e-06,
2432
+ "loss": 2.0318,
2433
+ "step": 344
2434
+ },
2435
+ {
2436
+ "epoch": 0.4568326271186441,
2437
+ "grad_norm": 4.09375,
2438
+ "learning_rate": 6.118706259721414e-06,
2439
+ "loss": 2.0361,
2440
+ "step": 345
2441
+ },
2442
+ {
2443
+ "epoch": 0.4581567796610169,
2444
+ "grad_norm": 3.984375,
2445
+ "learning_rate": 6.097343087267386e-06,
2446
+ "loss": 2.0142,
2447
+ "step": 346
2448
+ },
2449
+ {
2450
+ "epoch": 0.4594809322033898,
2451
+ "grad_norm": 4.09375,
2452
+ "learning_rate": 6.075958847790262e-06,
2453
+ "loss": 2.0354,
2454
+ "step": 347
2455
+ },
2456
+ {
2457
+ "epoch": 0.4608050847457627,
2458
+ "grad_norm": 3.765625,
2459
+ "learning_rate": 6.054553951829163e-06,
2460
+ "loss": 1.9838,
2461
+ "step": 348
2462
+ },
2463
+ {
2464
+ "epoch": 0.4621292372881356,
2465
+ "grad_norm": 4.03125,
2466
+ "learning_rate": 6.033128810319779e-06,
2467
+ "loss": 1.9332,
2468
+ "step": 349
2469
+ },
2470
+ {
2471
+ "epoch": 0.4634533898305085,
2472
+ "grad_norm": 3.75,
2473
+ "learning_rate": 6.011683834586474e-06,
2474
+ "loss": 2.0284,
2475
+ "step": 350
2476
+ },
2477
+ {
2478
+ "epoch": 0.4647775423728814,
2479
+ "grad_norm": 3.703125,
2480
+ "learning_rate": 5.9902194363344014e-06,
2481
+ "loss": 1.9933,
2482
+ "step": 351
2483
+ },
2484
+ {
2485
+ "epoch": 0.4661016949152542,
2486
+ "grad_norm": 3.96875,
2487
+ "learning_rate": 5.968736027641584e-06,
2488
+ "loss": 1.9212,
2489
+ "step": 352
2490
+ },
2491
+ {
2492
+ "epoch": 0.4674258474576271,
2493
+ "grad_norm": 4.3125,
2494
+ "learning_rate": 5.947234020951015e-06,
2495
+ "loss": 1.9715,
2496
+ "step": 353
2497
+ },
2498
+ {
2499
+ "epoch": 0.46875,
2500
+ "grad_norm": 4.0625,
2501
+ "learning_rate": 5.925713829062737e-06,
2502
+ "loss": 2.116,
2503
+ "step": 354
2504
+ },
2505
+ {
2506
+ "epoch": 0.4700741525423729,
2507
+ "grad_norm": 4.0,
2508
+ "learning_rate": 5.904175865125915e-06,
2509
+ "loss": 1.8785,
2510
+ "step": 355
2511
+ },
2512
+ {
2513
+ "epoch": 0.4713983050847458,
2514
+ "grad_norm": 3.8125,
2515
+ "learning_rate": 5.882620542630901e-06,
2516
+ "loss": 2.1109,
2517
+ "step": 356
2518
+ },
2519
+ {
2520
+ "epoch": 0.4727224576271186,
2521
+ "grad_norm": 4.0625,
2522
+ "learning_rate": 5.86104827540131e-06,
2523
+ "loss": 2.046,
2524
+ "step": 357
2525
+ },
2526
+ {
2527
+ "epoch": 0.4740466101694915,
2528
+ "grad_norm": 3.890625,
2529
+ "learning_rate": 5.839459477586056e-06,
2530
+ "loss": 1.931,
2531
+ "step": 358
2532
+ },
2533
+ {
2534
+ "epoch": 0.4753707627118644,
2535
+ "grad_norm": 4.0,
2536
+ "learning_rate": 5.817854563651415e-06,
2537
+ "loss": 1.9138,
2538
+ "step": 359
2539
+ },
2540
+ {
2541
+ "epoch": 0.4766949152542373,
2542
+ "grad_norm": 3.90625,
2543
+ "learning_rate": 5.796233948373061e-06,
2544
+ "loss": 2.0626,
2545
+ "step": 360
2546
+ },
2547
+ {
2548
+ "epoch": 0.4780190677966102,
2549
+ "grad_norm": 3.6875,
2550
+ "learning_rate": 5.7745980468281116e-06,
2551
+ "loss": 1.9901,
2552
+ "step": 361
2553
+ },
2554
+ {
2555
+ "epoch": 0.4793432203389831,
2556
+ "grad_norm": 3.515625,
2557
+ "learning_rate": 5.752947274387147e-06,
2558
+ "loss": 2.1562,
2559
+ "step": 362
2560
+ },
2561
+ {
2562
+ "epoch": 0.4806673728813559,
2563
+ "grad_norm": 4.03125,
2564
+ "learning_rate": 5.731282046706247e-06,
2565
+ "loss": 1.9464,
2566
+ "step": 363
2567
+ },
2568
+ {
2569
+ "epoch": 0.4819915254237288,
2570
+ "grad_norm": 3.875,
2571
+ "learning_rate": 5.709602779718999e-06,
2572
+ "loss": 1.9471,
2573
+ "step": 364
2574
+ },
2575
+ {
2576
+ "epoch": 0.4833156779661017,
2577
+ "grad_norm": 3.640625,
2578
+ "learning_rate": 5.687909889628529e-06,
2579
+ "loss": 1.9786,
2580
+ "step": 365
2581
+ },
2582
+ {
2583
+ "epoch": 0.4846398305084746,
2584
+ "grad_norm": 3.796875,
2585
+ "learning_rate": 5.666203792899496e-06,
2586
+ "loss": 2.0612,
2587
+ "step": 366
2588
+ },
2589
+ {
2590
+ "epoch": 0.4859639830508475,
2591
+ "grad_norm": 3.84375,
2592
+ "learning_rate": 5.644484906250104e-06,
2593
+ "loss": 1.9507,
2594
+ "step": 367
2595
+ },
2596
+ {
2597
+ "epoch": 0.4872881355932203,
2598
+ "grad_norm": 3.984375,
2599
+ "learning_rate": 5.622753646644102e-06,
2600
+ "loss": 1.8828,
2601
+ "step": 368
2602
+ },
2603
+ {
2604
+ "epoch": 0.4886122881355932,
2605
+ "grad_norm": 3.671875,
2606
+ "learning_rate": 5.601010431282777e-06,
2607
+ "loss": 1.9527,
2608
+ "step": 369
2609
+ },
2610
+ {
2611
+ "epoch": 0.4899364406779661,
2612
+ "grad_norm": 3.90625,
2613
+ "learning_rate": 5.579255677596944e-06,
2614
+ "loss": 2.0724,
2615
+ "step": 370
2616
+ },
2617
+ {
2618
+ "epoch": 0.491260593220339,
2619
+ "grad_norm": 3.890625,
2620
+ "learning_rate": 5.557489803238934e-06,
2621
+ "loss": 1.9829,
2622
+ "step": 371
2623
+ },
2624
+ {
2625
+ "epoch": 0.4925847457627119,
2626
+ "grad_norm": 3.75,
2627
+ "learning_rate": 5.535713226074576e-06,
2628
+ "loss": 1.9163,
2629
+ "step": 372
2630
+ },
2631
+ {
2632
+ "epoch": 0.4939088983050847,
2633
+ "grad_norm": 3.90625,
2634
+ "learning_rate": 5.513926364175172e-06,
2635
+ "loss": 2.0671,
2636
+ "step": 373
2637
+ },
2638
+ {
2639
+ "epoch": 0.4952330508474576,
2640
+ "grad_norm": 3.75,
2641
+ "learning_rate": 5.492129635809473e-06,
2642
+ "loss": 2.0903,
2643
+ "step": 374
2644
+ },
2645
+ {
2646
+ "epoch": 0.4965572033898305,
2647
+ "grad_norm": 4.125,
2648
+ "learning_rate": 5.47032345943565e-06,
2649
+ "loss": 2.0251,
2650
+ "step": 375
2651
+ },
2652
+ {
2653
+ "epoch": 0.4978813559322034,
2654
+ "grad_norm": 3.65625,
2655
+ "learning_rate": 5.4485082536932564e-06,
2656
+ "loss": 2.0114,
2657
+ "step": 376
2658
+ },
2659
+ {
2660
+ "epoch": 0.4992055084745763,
2661
+ "grad_norm": 3.734375,
2662
+ "learning_rate": 5.426684437395196e-06,
2663
+ "loss": 1.9574,
2664
+ "step": 377
2665
+ },
2666
+ {
2667
+ "epoch": 0.5005296610169492,
2668
+ "grad_norm": 4.25,
2669
+ "learning_rate": 5.404852429519678e-06,
2670
+ "loss": 1.9259,
2671
+ "step": 378
2672
+ },
2673
+ {
2674
+ "epoch": 0.501853813559322,
2675
+ "grad_norm": 4.03125,
2676
+ "learning_rate": 5.383012649202173e-06,
2677
+ "loss": 1.9558,
2678
+ "step": 379
2679
+ },
2680
+ {
2681
+ "epoch": 0.503177966101695,
2682
+ "grad_norm": 3.96875,
2683
+ "learning_rate": 5.361165515727374e-06,
2684
+ "loss": 2.0474,
2685
+ "step": 380
2686
+ },
2687
+ {
2688
+ "epoch": 0.5045021186440678,
2689
+ "grad_norm": 3.890625,
2690
+ "learning_rate": 5.3393114485211394e-06,
2691
+ "loss": 2.0343,
2692
+ "step": 381
2693
+ },
2694
+ {
2695
+ "epoch": 0.5058262711864406,
2696
+ "grad_norm": 3.84375,
2697
+ "learning_rate": 5.31745086714244e-06,
2698
+ "loss": 1.9331,
2699
+ "step": 382
2700
+ },
2701
+ {
2702
+ "epoch": 0.5071504237288136,
2703
+ "grad_norm": 4.0,
2704
+ "learning_rate": 5.295584191275308e-06,
2705
+ "loss": 1.8745,
2706
+ "step": 383
2707
+ },
2708
+ {
2709
+ "epoch": 0.5084745762711864,
2710
+ "grad_norm": 3.8125,
2711
+ "learning_rate": 5.273711840720783e-06,
2712
+ "loss": 1.9222,
2713
+ "step": 384
2714
+ },
2715
+ {
2716
+ "epoch": 0.5097987288135594,
2717
+ "grad_norm": 4.0,
2718
+ "learning_rate": 5.251834235388845e-06,
2719
+ "loss": 2.1023,
2720
+ "step": 385
2721
+ },
2722
+ {
2723
+ "epoch": 0.5111228813559322,
2724
+ "grad_norm": 3.96875,
2725
+ "learning_rate": 5.229951795290353e-06,
2726
+ "loss": 1.9507,
2727
+ "step": 386
2728
+ },
2729
+ {
2730
+ "epoch": 0.512447033898305,
2731
+ "grad_norm": 3.75,
2732
+ "learning_rate": 5.208064940528994e-06,
2733
+ "loss": 2.0536,
2734
+ "step": 387
2735
+ },
2736
+ {
2737
+ "epoch": 0.513771186440678,
2738
+ "grad_norm": 3.6875,
2739
+ "learning_rate": 5.1861740912932e-06,
2740
+ "loss": 2.0979,
2741
+ "step": 388
2742
+ },
2743
+ {
2744
+ "epoch": 0.5150953389830508,
2745
+ "grad_norm": 3.75,
2746
+ "learning_rate": 5.164279667848094e-06,
2747
+ "loss": 2.0845,
2748
+ "step": 389
2749
+ },
2750
+ {
2751
+ "epoch": 0.5164194915254238,
2752
+ "grad_norm": 4.09375,
2753
+ "learning_rate": 5.142382090527415e-06,
2754
+ "loss": 2.0602,
2755
+ "step": 390
2756
+ },
2757
+ {
2758
+ "epoch": 0.5177436440677966,
2759
+ "grad_norm": 3.953125,
2760
+ "learning_rate": 5.1204817797254545e-06,
2761
+ "loss": 1.883,
2762
+ "step": 391
2763
+ },
2764
+ {
2765
+ "epoch": 0.5190677966101694,
2766
+ "grad_norm": 3.75,
2767
+ "learning_rate": 5.0985791558889785e-06,
2768
+ "loss": 2.131,
2769
+ "step": 392
2770
+ },
2771
+ {
2772
+ "epoch": 0.5203919491525424,
2773
+ "grad_norm": 3.90625,
2774
+ "learning_rate": 5.07667463950916e-06,
2775
+ "loss": 2.0166,
2776
+ "step": 393
2777
+ },
2778
+ {
2779
+ "epoch": 0.5217161016949152,
2780
+ "grad_norm": 3.703125,
2781
+ "learning_rate": 5.054768651113506e-06,
2782
+ "loss": 1.9136,
2783
+ "step": 394
2784
+ },
2785
+ {
2786
+ "epoch": 0.5230402542372882,
2787
+ "grad_norm": 4.15625,
2788
+ "learning_rate": 5.032861611257783e-06,
2789
+ "loss": 2.0923,
2790
+ "step": 395
2791
+ },
2792
+ {
2793
+ "epoch": 0.524364406779661,
2794
+ "grad_norm": 3.8125,
2795
+ "learning_rate": 5.0109539405179456e-06,
2796
+ "loss": 2.1243,
2797
+ "step": 396
2798
+ },
2799
+ {
2800
+ "epoch": 0.5256885593220338,
2801
+ "grad_norm": 3.703125,
2802
+ "learning_rate": 4.989046059482055e-06,
2803
+ "loss": 2.0784,
2804
+ "step": 397
2805
+ },
2806
+ {
2807
+ "epoch": 0.5270127118644068,
2808
+ "grad_norm": 3.765625,
2809
+ "learning_rate": 4.967138388742218e-06,
2810
+ "loss": 1.8999,
2811
+ "step": 398
2812
+ },
2813
+ {
2814
+ "epoch": 0.5283368644067796,
2815
+ "grad_norm": 3.734375,
2816
+ "learning_rate": 4.945231348886495e-06,
2817
+ "loss": 2.0906,
2818
+ "step": 399
2819
+ },
2820
+ {
2821
+ "epoch": 0.5296610169491526,
2822
+ "grad_norm": 3.828125,
2823
+ "learning_rate": 4.923325360490841e-06,
2824
+ "loss": 1.9295,
2825
+ "step": 400
2826
+ },
2827
+ {
2828
+ "epoch": 0.5296610169491526,
2829
+ "eval_AskDoctor-Chinese_loss": 1.9834351539611816,
2830
+ "eval_AskDoctor-Chinese_runtime": 15.9925,
2831
+ "eval_AskDoctor-Chinese_samples_per_second": 1.876,
2832
+ "eval_AskDoctor-Chinese_steps_per_second": 1.876,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.5309851694915254,
2837
+ "grad_norm": 4.03125,
2838
+ "learning_rate": 4.9014208441110215e-06,
2839
+ "loss": 2.0197,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.5323093220338984,
2844
+ "grad_norm": 3.75,
2845
+ "learning_rate": 4.879518220274546e-06,
2846
+ "loss": 2.0886,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.5336334745762712,
2851
+ "grad_norm": 4.5,
2852
+ "learning_rate": 4.8576179094725855e-06,
2853
+ "loss": 1.9252,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.534957627118644,
2858
+ "grad_norm": 3.859375,
2859
+ "learning_rate": 4.835720332151907e-06,
2860
+ "loss": 2.0754,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.536281779661017,
2865
+ "grad_norm": 3.6875,
2866
+ "learning_rate": 4.813825908706802e-06,
2867
+ "loss": 2.1356,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.5376059322033898,
2872
+ "grad_norm": 3.8125,
2873
+ "learning_rate": 4.791935059471007e-06,
2874
+ "loss": 2.0131,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.5389300847457628,
2879
+ "grad_norm": 3.734375,
2880
+ "learning_rate": 4.770048204709648e-06,
2881
+ "loss": 1.8858,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.5402542372881356,
2886
+ "grad_norm": 6.34375,
2887
+ "learning_rate": 4.748165764611157e-06,
2888
+ "loss": 1.9881,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.5415783898305084,
2893
+ "grad_norm": 3.734375,
2894
+ "learning_rate": 4.726288159279218e-06,
2895
+ "loss": 2.0027,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.5429025423728814,
2900
+ "grad_norm": 3.9375,
2901
+ "learning_rate": 4.7044158087246926e-06,
2902
+ "loss": 2.1449,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.5442266949152542,
2907
+ "grad_norm": 3.609375,
2908
+ "learning_rate": 4.682549132857562e-06,
2909
+ "loss": 2.0456,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.5455508474576272,
2914
+ "grad_norm": 3.96875,
2915
+ "learning_rate": 4.660688551478861e-06,
2916
+ "loss": 2.2308,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.546875,
2921
+ "grad_norm": 3.875,
2922
+ "learning_rate": 4.6388344842726266e-06,
2923
+ "loss": 2.0734,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.5481991525423728,
2928
+ "grad_norm": 3.84375,
2929
+ "learning_rate": 4.616987350797827e-06,
2930
+ "loss": 2.0188,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.5495233050847458,
2935
+ "grad_norm": 3.578125,
2936
+ "learning_rate": 4.595147570480324e-06,
2937
+ "loss": 2.1403,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.5508474576271186,
2942
+ "grad_norm": 5.75,
2943
+ "learning_rate": 4.573315562604804e-06,
2944
+ "loss": 1.8386,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.5521716101694916,
2949
+ "grad_norm": 3.671875,
2950
+ "learning_rate": 4.551491746306744e-06,
2951
+ "loss": 2.0066,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.5534957627118644,
2956
+ "grad_norm": 4.0625,
2957
+ "learning_rate": 4.529676540564351e-06,
2958
+ "loss": 1.9468,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.5548199152542372,
2963
+ "grad_norm": 3.9375,
2964
+ "learning_rate": 4.5078703641905275e-06,
2965
+ "loss": 2.0946,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.5561440677966102,
2970
+ "grad_norm": 3.625,
2971
+ "learning_rate": 4.486073635824831e-06,
2972
+ "loss": 2.206,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.557468220338983,
2977
+ "grad_norm": 3.734375,
2978
+ "learning_rate": 4.464286773925426e-06,
2979
+ "loss": 1.977,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.558792372881356,
2984
+ "grad_norm": 3.765625,
2985
+ "learning_rate": 4.442510196761068e-06,
2986
+ "loss": 1.8473,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.5601165254237288,
2991
+ "grad_norm": 3.65625,
2992
+ "learning_rate": 4.420744322403058e-06,
2993
+ "loss": 2.1905,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.5614406779661016,
2998
+ "grad_norm": 3.71875,
2999
+ "learning_rate": 4.398989568717226e-06,
3000
+ "loss": 2.0168,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.5627648305084746,
3005
+ "grad_norm": 4.84375,
3006
+ "learning_rate": 4.377246353355899e-06,
3007
+ "loss": 1.9603,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.5640889830508474,
3012
+ "grad_norm": 3.703125,
3013
+ "learning_rate": 4.355515093749897e-06,
3014
+ "loss": 1.9786,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.5654131355932204,
3019
+ "grad_norm": 3.703125,
3020
+ "learning_rate": 4.333796207100505e-06,
3021
+ "loss": 1.9911,
3022
+ "step": 427
3023
+ },
3024
+ {
3025
+ "epoch": 0.5667372881355932,
3026
+ "grad_norm": 5.25,
3027
+ "learning_rate": 4.312090110371473e-06,
3028
+ "loss": 1.9617,
3029
+ "step": 428
3030
+ },
3031
+ {
3032
+ "epoch": 0.5680614406779662,
3033
+ "grad_norm": 3.921875,
3034
+ "learning_rate": 4.290397220281002e-06,
3035
+ "loss": 1.9384,
3036
+ "step": 429
3037
+ },
3038
+ {
3039
+ "epoch": 0.569385593220339,
3040
+ "grad_norm": 3.84375,
3041
+ "learning_rate": 4.268717953293755e-06,
3042
+ "loss": 2.1731,
3043
+ "step": 430
3044
+ },
3045
+ {
3046
+ "epoch": 0.5707097457627118,
3047
+ "grad_norm": 3.796875,
3048
+ "learning_rate": 4.247052725612853e-06,
3049
+ "loss": 1.8694,
3050
+ "step": 431
3051
+ },
3052
+ {
3053
+ "epoch": 0.5720338983050848,
3054
+ "grad_norm": 3.90625,
3055
+ "learning_rate": 4.22540195317189e-06,
3056
+ "loss": 1.8741,
3057
+ "step": 432
3058
+ },
3059
+ {
3060
+ "epoch": 0.5733580508474576,
3061
+ "grad_norm": 3.6875,
3062
+ "learning_rate": 4.203766051626939e-06,
3063
+ "loss": 1.9796,
3064
+ "step": 433
3065
+ },
3066
+ {
3067
+ "epoch": 0.5746822033898306,
3068
+ "grad_norm": 4.0,
3069
+ "learning_rate": 4.182145436348587e-06,
3070
+ "loss": 1.9154,
3071
+ "step": 434
3072
+ },
3073
+ {
3074
+ "epoch": 0.5760063559322034,
3075
+ "grad_norm": 3.6875,
3076
+ "learning_rate": 4.160540522413947e-06,
3077
+ "loss": 1.9181,
3078
+ "step": 435
3079
+ },
3080
+ {
3081
+ "epoch": 0.5773305084745762,
3082
+ "grad_norm": 3.6875,
3083
+ "learning_rate": 4.138951724598692e-06,
3084
+ "loss": 2.0523,
3085
+ "step": 436
3086
+ },
3087
+ {
3088
+ "epoch": 0.5786546610169492,
3089
+ "grad_norm": 3.8125,
3090
+ "learning_rate": 4.1173794573691e-06,
3091
+ "loss": 1.8367,
3092
+ "step": 437
3093
+ },
3094
+ {
3095
+ "epoch": 0.579978813559322,
3096
+ "grad_norm": 3.96875,
3097
+ "learning_rate": 4.095824134874087e-06,
3098
+ "loss": 2.0884,
3099
+ "step": 438
3100
+ },
3101
+ {
3102
+ "epoch": 0.581302966101695,
3103
+ "grad_norm": 4.03125,
3104
+ "learning_rate": 4.074286170937265e-06,
3105
+ "loss": 2.0347,
3106
+ "step": 439
3107
+ },
3108
+ {
3109
+ "epoch": 0.5826271186440678,
3110
+ "grad_norm": 4.0625,
3111
+ "learning_rate": 4.052765979048986e-06,
3112
+ "loss": 2.0196,
3113
+ "step": 440
3114
+ },
3115
+ {
3116
+ "epoch": 0.5839512711864406,
3117
+ "grad_norm": 3.734375,
3118
+ "learning_rate": 4.031263972358419e-06,
3119
+ "loss": 1.9662,
3120
+ "step": 441
3121
+ },
3122
+ {
3123
+ "epoch": 0.5852754237288136,
3124
+ "grad_norm": 3.6875,
3125
+ "learning_rate": 4.009780563665601e-06,
3126
+ "loss": 1.9913,
3127
+ "step": 442
3128
+ },
3129
+ {
3130
+ "epoch": 0.5865995762711864,
3131
+ "grad_norm": 3.90625,
3132
+ "learning_rate": 3.988316165413528e-06,
3133
+ "loss": 2.0734,
3134
+ "step": 443
3135
+ },
3136
+ {
3137
+ "epoch": 0.5879237288135594,
3138
+ "grad_norm": 3.71875,
3139
+ "learning_rate": 3.966871189680223e-06,
3140
+ "loss": 1.9153,
3141
+ "step": 444
3142
+ },
3143
+ {
3144
+ "epoch": 0.5892478813559322,
3145
+ "grad_norm": 3.96875,
3146
+ "learning_rate": 3.945446048170839e-06,
3147
+ "loss": 1.9798,
3148
+ "step": 445
3149
+ },
3150
+ {
3151
+ "epoch": 0.590572033898305,
3152
+ "grad_norm": 3.8125,
3153
+ "learning_rate": 3.924041152209739e-06,
3154
+ "loss": 1.9039,
3155
+ "step": 446
3156
+ },
3157
+ {
3158
+ "epoch": 0.591896186440678,
3159
+ "grad_norm": 4.4375,
3160
+ "learning_rate": 3.902656912732616e-06,
3161
+ "loss": 1.9863,
3162
+ "step": 447
3163
+ },
3164
+ {
3165
+ "epoch": 0.5932203389830508,
3166
+ "grad_norm": 3.984375,
3167
+ "learning_rate": 3.881293740278588e-06,
3168
+ "loss": 1.9465,
3169
+ "step": 448
3170
+ },
3171
+ {
3172
+ "epoch": 0.5945444915254238,
3173
+ "grad_norm": 3.71875,
3174
+ "learning_rate": 3.859952044982329e-06,
3175
+ "loss": 2.0645,
3176
+ "step": 449
3177
+ },
3178
+ {
3179
+ "epoch": 0.5958686440677966,
3180
+ "grad_norm": 3.828125,
3181
+ "learning_rate": 3.83863223656619e-06,
3182
+ "loss": 2.0472,
3183
+ "step": 450
3184
+ },
3185
+ {
3186
+ "epoch": 0.5971927966101694,
3187
+ "grad_norm": 3.671875,
3188
+ "learning_rate": 3.8173347243323275e-06,
3189
+ "loss": 1.8184,
3190
+ "step": 451
3191
+ },
3192
+ {
3193
+ "epoch": 0.5985169491525424,
3194
+ "grad_norm": 4.0625,
3195
+ "learning_rate": 3.7960599171548572e-06,
3196
+ "loss": 1.9835,
3197
+ "step": 452
3198
+ },
3199
+ {
3200
+ "epoch": 0.5998411016949152,
3201
+ "grad_norm": 3.671875,
3202
+ "learning_rate": 3.774808223471996e-06,
3203
+ "loss": 1.9712,
3204
+ "step": 453
3205
+ },
3206
+ {
3207
+ "epoch": 0.6011652542372882,
3208
+ "grad_norm": 3.703125,
3209
+ "learning_rate": 3.7535800512782254e-06,
3210
+ "loss": 2.0324,
3211
+ "step": 454
3212
+ },
3213
+ {
3214
+ "epoch": 0.602489406779661,
3215
+ "grad_norm": 3.59375,
3216
+ "learning_rate": 3.732375808116451e-06,
3217
+ "loss": 2.1901,
3218
+ "step": 455
3219
+ },
3220
+ {
3221
+ "epoch": 0.6038135593220338,
3222
+ "grad_norm": 3.625,
3223
+ "learning_rate": 3.711195901070188e-06,
3224
+ "loss": 2.031,
3225
+ "step": 456
3226
+ },
3227
+ {
3228
+ "epoch": 0.6051377118644068,
3229
+ "grad_norm": 3.78125,
3230
+ "learning_rate": 3.690040736755742e-06,
3231
+ "loss": 2.0682,
3232
+ "step": 457
3233
+ },
3234
+ {
3235
+ "epoch": 0.6064618644067796,
3236
+ "grad_norm": 3.78125,
3237
+ "learning_rate": 3.6689107213144025e-06,
3238
+ "loss": 2.1191,
3239
+ "step": 458
3240
+ },
3241
+ {
3242
+ "epoch": 0.6077860169491526,
3243
+ "grad_norm": 3.65625,
3244
+ "learning_rate": 3.6478062604046406e-06,
3245
+ "loss": 1.921,
3246
+ "step": 459
3247
+ },
3248
+ {
3249
+ "epoch": 0.6091101694915254,
3250
+ "grad_norm": 6.03125,
3251
+ "learning_rate": 3.626727759194334e-06,
3252
+ "loss": 2.0207,
3253
+ "step": 460
3254
+ },
3255
+ {
3256
+ "epoch": 0.6104343220338984,
3257
+ "grad_norm": 3.59375,
3258
+ "learning_rate": 3.6056756223529734e-06,
3259
+ "loss": 2.1463,
3260
+ "step": 461
3261
+ },
3262
+ {
3263
+ "epoch": 0.6117584745762712,
3264
+ "grad_norm": 4.1875,
3265
+ "learning_rate": 3.5846502540439076e-06,
3266
+ "loss": 1.9282,
3267
+ "step": 462
3268
+ },
3269
+ {
3270
+ "epoch": 0.613082627118644,
3271
+ "grad_norm": 3.53125,
3272
+ "learning_rate": 3.5636520579165704e-06,
3273
+ "loss": 2.1905,
3274
+ "step": 463
3275
+ },
3276
+ {
3277
+ "epoch": 0.614406779661017,
3278
+ "grad_norm": 3.515625,
3279
+ "learning_rate": 3.542681437098745e-06,
3280
+ "loss": 2.1518,
3281
+ "step": 464
3282
+ },
3283
+ {
3284
+ "epoch": 0.6157309322033898,
3285
+ "grad_norm": 3.8125,
3286
+ "learning_rate": 3.5217387941888117e-06,
3287
+ "loss": 2.0076,
3288
+ "step": 465
3289
+ },
3290
+ {
3291
+ "epoch": 0.6170550847457628,
3292
+ "grad_norm": 3.765625,
3293
+ "learning_rate": 3.5008245312480326e-06,
3294
+ "loss": 2.1018,
3295
+ "step": 466
3296
+ },
3297
+ {
3298
+ "epoch": 0.6183792372881356,
3299
+ "grad_norm": 4.09375,
3300
+ "learning_rate": 3.479939049792817e-06,
3301
+ "loss": 1.8781,
3302
+ "step": 467
3303
+ },
3304
+ {
3305
+ "epoch": 0.6197033898305084,
3306
+ "grad_norm": 3.78125,
3307
+ "learning_rate": 3.4590827507870257e-06,
3308
+ "loss": 2.0801,
3309
+ "step": 468
3310
+ },
3311
+ {
3312
+ "epoch": 0.6210275423728814,
3313
+ "grad_norm": 4.375,
3314
+ "learning_rate": 3.4382560346342707e-06,
3315
+ "loss": 2.211,
3316
+ "step": 469
3317
+ },
3318
+ {
3319
+ "epoch": 0.6223516949152542,
3320
+ "grad_norm": 3.828125,
3321
+ "learning_rate": 3.4174593011702197e-06,
3322
+ "loss": 1.8481,
3323
+ "step": 470
3324
+ },
3325
+ {
3326
+ "epoch": 0.6236758474576272,
3327
+ "grad_norm": 3.671875,
3328
+ "learning_rate": 3.396692949654933e-06,
3329
+ "loss": 2.0414,
3330
+ "step": 471
3331
+ },
3332
+ {
3333
+ "epoch": 0.625,
3334
+ "grad_norm": 3.984375,
3335
+ "learning_rate": 3.3759573787651877e-06,
3336
+ "loss": 2.094,
3337
+ "step": 472
3338
+ },
3339
+ {
3340
+ "epoch": 0.6263241525423728,
3341
+ "grad_norm": 3.734375,
3342
+ "learning_rate": 3.3552529865868323e-06,
3343
+ "loss": 2.0496,
3344
+ "step": 473
3345
+ },
3346
+ {
3347
+ "epoch": 0.6276483050847458,
3348
+ "grad_norm": 3.84375,
3349
+ "learning_rate": 3.3345801706071325e-06,
3350
+ "loss": 2.113,
3351
+ "step": 474
3352
+ },
3353
+ {
3354
+ "epoch": 0.6289724576271186,
3355
+ "grad_norm": 4.03125,
3356
+ "learning_rate": 3.3139393277071554e-06,
3357
+ "loss": 1.8577,
3358
+ "step": 475
3359
+ },
3360
+ {
3361
+ "epoch": 0.6302966101694916,
3362
+ "grad_norm": 5.21875,
3363
+ "learning_rate": 3.2933308541541365e-06,
3364
+ "loss": 2.059,
3365
+ "step": 476
3366
+ },
3367
+ {
3368
+ "epoch": 0.6316207627118644,
3369
+ "grad_norm": 3.5625,
3370
+ "learning_rate": 3.2727551455938832e-06,
3371
+ "loss": 2.1471,
3372
+ "step": 477
3373
+ },
3374
+ {
3375
+ "epoch": 0.6329449152542372,
3376
+ "grad_norm": 3.953125,
3377
+ "learning_rate": 3.252212597043167e-06,
3378
+ "loss": 2.0538,
3379
+ "step": 478
3380
+ },
3381
+ {
3382
+ "epoch": 0.6342690677966102,
3383
+ "grad_norm": 3.8125,
3384
+ "learning_rate": 3.2317036028821523e-06,
3385
+ "loss": 1.9275,
3386
+ "step": 479
3387
+ },
3388
+ {
3389
+ "epoch": 0.635593220338983,
3390
+ "grad_norm": 4.125,
3391
+ "learning_rate": 3.2112285568468166e-06,
3392
+ "loss": 1.9979,
3393
+ "step": 480
3394
+ },
3395
+ {
3396
+ "epoch": 0.636917372881356,
3397
+ "grad_norm": 3.796875,
3398
+ "learning_rate": 3.190787852021396e-06,
3399
+ "loss": 2.1286,
3400
+ "step": 481
3401
+ },
3402
+ {
3403
+ "epoch": 0.6382415254237288,
3404
+ "grad_norm": 3.78125,
3405
+ "learning_rate": 3.1703818808308327e-06,
3406
+ "loss": 2.007,
3407
+ "step": 482
3408
+ },
3409
+ {
3410
+ "epoch": 0.6395656779661016,
3411
+ "grad_norm": 3.859375,
3412
+ "learning_rate": 3.1500110350332492e-06,
3413
+ "loss": 1.9457,
3414
+ "step": 483
3415
+ },
3416
+ {
3417
+ "epoch": 0.6408898305084746,
3418
+ "grad_norm": 4.09375,
3419
+ "learning_rate": 3.1296757057124243e-06,
3420
+ "loss": 1.9245,
3421
+ "step": 484
3422
+ },
3423
+ {
3424
+ "epoch": 0.6422139830508474,
3425
+ "grad_norm": 4.125,
3426
+ "learning_rate": 3.1093762832702775e-06,
3427
+ "loss": 2.0545,
3428
+ "step": 485
3429
+ },
3430
+ {
3431
+ "epoch": 0.6435381355932204,
3432
+ "grad_norm": 3.859375,
3433
+ "learning_rate": 3.08911315741939e-06,
3434
+ "loss": 2.0104,
3435
+ "step": 486
3436
+ },
3437
+ {
3438
+ "epoch": 0.6448622881355932,
3439
+ "grad_norm": 3.515625,
3440
+ "learning_rate": 3.0688867171755043e-06,
3441
+ "loss": 2.0609,
3442
+ "step": 487
3443
+ },
3444
+ {
3445
+ "epoch": 0.6461864406779662,
3446
+ "grad_norm": 3.609375,
3447
+ "learning_rate": 3.048697350850073e-06,
3448
+ "loss": 2.0671,
3449
+ "step": 488
3450
+ },
3451
+ {
3452
+ "epoch": 0.647510593220339,
3453
+ "grad_norm": 3.96875,
3454
+ "learning_rate": 3.0285454460427855e-06,
3455
+ "loss": 1.9852,
3456
+ "step": 489
3457
+ },
3458
+ {
3459
+ "epoch": 0.6488347457627118,
3460
+ "grad_norm": 3.859375,
3461
+ "learning_rate": 3.0084313896341504e-06,
3462
+ "loss": 1.9553,
3463
+ "step": 490
3464
+ },
3465
+ {
3466
+ "epoch": 0.6501588983050848,
3467
+ "grad_norm": 3.625,
3468
+ "learning_rate": 2.988355567778043e-06,
3469
+ "loss": 2.1243,
3470
+ "step": 491
3471
+ },
3472
+ {
3473
+ "epoch": 0.6514830508474576,
3474
+ "grad_norm": 4.09375,
3475
+ "learning_rate": 2.9683183658943106e-06,
3476
+ "loss": 2.137,
3477
+ "step": 492
3478
+ },
3479
+ {
3480
+ "epoch": 0.6528072033898306,
3481
+ "grad_norm": 3.9375,
3482
+ "learning_rate": 2.9483201686613626e-06,
3483
+ "loss": 1.9655,
3484
+ "step": 493
3485
+ },
3486
+ {
3487
+ "epoch": 0.6541313559322034,
3488
+ "grad_norm": 4.03125,
3489
+ "learning_rate": 2.9283613600087933e-06,
3490
+ "loss": 2.0074,
3491
+ "step": 494
3492
+ },
3493
+ {
3494
+ "epoch": 0.6554555084745762,
3495
+ "grad_norm": 3.84375,
3496
+ "learning_rate": 2.9084423231099985e-06,
3497
+ "loss": 1.8278,
3498
+ "step": 495
3499
+ },
3500
+ {
3501
+ "epoch": 0.6567796610169492,
3502
+ "grad_norm": 3.765625,
3503
+ "learning_rate": 2.8885634403748397e-06,
3504
+ "loss": 2.0682,
3505
+ "step": 496
3506
+ },
3507
+ {
3508
+ "epoch": 0.658103813559322,
3509
+ "grad_norm": 3.796875,
3510
+ "learning_rate": 2.8687250934422774e-06,
3511
+ "loss": 2.0537,
3512
+ "step": 497
3513
+ },
3514
+ {
3515
+ "epoch": 0.659427966101695,
3516
+ "grad_norm": 3.828125,
3517
+ "learning_rate": 2.8489276631730633e-06,
3518
+ "loss": 1.848,
3519
+ "step": 498
3520
+ },
3521
+ {
3522
+ "epoch": 0.6607521186440678,
3523
+ "grad_norm": 3.765625,
3524
+ "learning_rate": 2.8291715296424282e-06,
3525
+ "loss": 1.9693,
3526
+ "step": 499
3527
+ },
3528
+ {
3529
+ "epoch": 0.6620762711864406,
3530
+ "grad_norm": 3.59375,
3531
+ "learning_rate": 2.809457072132766e-06,
3532
+ "loss": 1.8889,
3533
+ "step": 500
3534
+ }
3535
+ ],
3536
+ "logging_steps": 1.0,
3537
+ "max_steps": 755,
3538
+ "num_input_tokens_seen": 0,
3539
+ "num_train_epochs": 1,
3540
+ "save_steps": 500,
3541
+ "total_flos": 8.160964319714918e+17,
3542
+ "train_batch_size": 1,
3543
+ "trial_name": null,
3544
+ "trial_params": null
3545
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4a38fdf60b76588af096750bbe9aaedc3af8741d50294007e445669596c4965
3
+ size 4795
runs/Nov04_00-07-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1730650101.autodl-container-4be511b1ae-46466da0.1254.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cbe92b0608194dcfc686d3060d8d44817abdb0db75b77f92e6265f6090dc95c
3
+ size 6132
runs/Nov04_00-10-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1730650280.autodl-container-4be511b1ae-46466da0.1417.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c3815b016f07b0a159e1e69ba89689f2b131302f99c65551c47538d07ae952
3
+ size 166125
runs/Oct22_22-32-37_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729607600.autodl-container-4be511b1ae-46466da0.1125.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f4ae517793a3a798c168af0c271eece4ae08242e800ca790773c7b44d43c318
3
+ size 5587
runs/Oct22_23-34-53_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729611338.autodl-container-4be511b1ae-46466da0.845.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbe983cfb6a4cd519e08c76fcde0c25ac6f4a9e123d77186333b45cd3421d5b2
3
+ size 6480
runs/Oct24_22-55-18_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729781767.autodl-container-4be511b1ae-46466da0.884.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:964818c5a6a0f9ad9ffdc163513f1aecf5e93e8085e18cdef57af9d773cb5fd7
3
+ size 33058
runs/Oct25_00-15-00_autodl-container-4be511b1ae-46466da0/events.out.tfevents.1729786546.autodl-container-4be511b1ae-46466da0.861.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fe28e2030fb22a514c8f4ee9189302480a9425839adf63579efc3f5c4ec5c2e
3
+ size 6753
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86840d604f9e18ebbdc35aa937cfc2486fe774534ceea0fd3f667a72bc7584b2
3
+ size 925420
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4a38fdf60b76588af096750bbe9aaedc3af8741d50294007e445669596c4965
3
+ size 4795