wormcode commited on
Commit
fdcdf2c
·
1 Parent(s): dd722be

recovery app.py

Browse files
Files changed (1) hide show
  1. app.py +172 -171
app.py CHANGED
@@ -1,171 +1,172 @@
1
- import sys
2
-
3
-
4
- import gradio as gr
5
- import torch
6
- import transformers
7
- from peft import PeftModel
8
- from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
9
-
10
- from utils.prompter import Prompter
11
-
12
- if torch.cuda.is_available():
13
- device = "cuda"
14
- else:
15
- device = "cpu"
16
-
17
- try:
18
- if torch.backends.mps.is_available():
19
- device = "mps"
20
- except: # noqa: E722
21
- pass
22
-
23
-
24
- def main(
25
- load_8bit: bool = False,
26
- base_model: str = "decapoda-research/llama-7b-hf",
27
- lora_weights: str = "./adapter_model.bin",
28
- prompt_template: str = "med_template", # The prompt template to use, will default to alpaca.
29
- server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.0.0.0'
30
- share_gradio: bool = True,
31
- ):
32
- assert (
33
- base_model
34
- ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
35
-
36
- prompter = Prompter(prompt_template)
37
- tokenizer = LlamaTokenizer.from_pretrained(base_model)
38
- if device == "cuda":
39
- model = LlamaForCausalLM.from_pretrained(
40
- base_model,
41
- load_in_8bit=load_8bit,
42
- torch_dtype=torch.float16,
43
- device_map="auto",
44
- )
45
- model = PeftModel.from_pretrained(
46
- model,
47
- lora_weights,
48
- torch_dtype=torch.float16,
49
- )
50
- elif device == "mps":
51
- model = LlamaForCausalLM.from_pretrained(
52
- base_model,
53
- device_map={"": device},
54
- torch_dtype=torch.float16,
55
- )
56
- model = PeftModel.from_pretrained(
57
- model,
58
- lora_weights,
59
- device_map={"": device},
60
- torch_dtype=torch.float16,
61
- )
62
- else:
63
- model = LlamaForCausalLM.from_pretrained(
64
- base_model, device_map={"": device}, low_cpu_mem_usage=True
65
- )
66
- model = PeftModel.from_pretrained(
67
- model,
68
- lora_weights,
69
- device_map={"": device},
70
- )
71
-
72
- # unwind broken decapoda-research config
73
- model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
74
- model.config.bos_token_id = 1
75
- model.config.eos_token_id = 2
76
-
77
- if not load_8bit:
78
- model.half() # seems to fix bugs for some users.
79
-
80
- model.eval()
81
- if torch.__version__ >= "2" and sys.platform != "win32":
82
- model = torch.compile(model)
83
-
84
- def evaluate(
85
- instruction,
86
- input=None,
87
- temperature=0.1,
88
- top_p=0.75,
89
- top_k=40,
90
- num_beams=4,
91
- max_new_tokens=256,
92
- **kwargs,
93
- ):
94
- prompt = prompter.generate_prompt(instruction, input)
95
- inputs = tokenizer(prompt, return_tensors="pt")
96
- input_ids = inputs["input_ids"].to(device)
97
- generation_config = GenerationConfig(
98
- temperature=temperature,
99
- top_p=top_p,
100
- top_k=top_k,
101
- num_beams=num_beams,
102
- **kwargs,
103
- )
104
- with torch.no_grad():
105
- generation_output = model.generate(
106
- input_ids=input_ids,
107
- generation_config=generation_config,
108
- return_dict_in_generate=True,
109
- output_scores=True,
110
- max_new_tokens=max_new_tokens,
111
- )
112
- s = generation_output.sequences[0]
113
- output = tokenizer.decode(s)
114
- return prompter.get_response(output)
115
-
116
- gr.Interface(
117
- fn=evaluate,
118
- inputs=[
119
- gr.components.Textbox(
120
- lines=2,
121
- label="Instruction",
122
- placeholder="Tell me about alpacas.",
123
- ),
124
- gr.components.Textbox(lines=2, label="Input", placeholder="none"),
125
- gr.components.Slider(
126
- minimum=0, maximum=1, value=0.1, label="Temperature"
127
- ),
128
- gr.components.Slider(
129
- minimum=0, maximum=1, value=0.75, label="Top p"
130
- ),
131
- gr.components.Slider(
132
- minimum=0, maximum=100, step=1, value=40, label="Top k"
133
- ),
134
- gr.components.Slider(
135
- minimum=1, maximum=4, step=1, value=4, label="Beams"
136
- ),
137
- gr.components.Slider(
138
- minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
139
- ),
140
- ],
141
- outputs=[
142
- gr.inputs.Textbox(
143
- lines=5,
144
- label="Output",
145
- )
146
- ],
147
- title="🦙🌲 Alpaca-LoRA",
148
- description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", # noqa: E501
149
- ).launch(server_name=server_name, share=share_gradio)
150
- # Old testing code follows.
151
-
152
- """
153
- # testing code for readme
154
- for instruction in [
155
- "Tell me about alpacas.",
156
- "Tell me about the president of Mexico in 2019.",
157
- "Tell me about the king of France in 2019.",
158
- "List all Canadian provinces in alphabetical order.",
159
- "Write a Python program that prints the first 10 Fibonacci numbers.",
160
- "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", # noqa: E501
161
- "Tell me five words that rhyme with 'shock'.",
162
- "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
163
- "Count up from 1 to 500.",
164
- ]:
165
- print("Instruction:", instruction)
166
- print("Response:", evaluate(instruction))
167
- print()
168
- """
169
-
170
-
171
-
 
 
1
+ import sys
2
+
3
+ import fire
4
+ import gradio as gr
5
+ import torch
6
+ import transformers
7
+ from peft import PeftModel
8
+ from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
9
+
10
+ from utils.prompter import Prompter
11
+
12
+ if torch.cuda.is_available():
13
+ device = "cuda"
14
+ else:
15
+ device = "cpu"
16
+
17
+ try:
18
+ if torch.backends.mps.is_available():
19
+ device = "mps"
20
+ except: # noqa: E722
21
+ pass
22
+
23
+
24
+ def main(
25
+ load_8bit: bool = False,
26
+ base_model: str = "decapoda-research/llama-7b-hf",
27
+ lora_weights: str = "./adapter_model.bin",
28
+ prompt_template: str = "med_template", # The prompt template to use, will default to alpaca.
29
+ server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.0.0.0'
30
+ share_gradio: bool = True,
31
+ ):
32
+ assert (
33
+ base_model
34
+ ), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
35
+
36
+ prompter = Prompter(prompt_template)
37
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
38
+ if device == "cuda":
39
+ model = LlamaForCausalLM.from_pretrained(
40
+ base_model,
41
+ load_in_8bit=load_8bit,
42
+ torch_dtype=torch.float16,
43
+ device_map="auto",
44
+ )
45
+ model = PeftModel.from_pretrained(
46
+ model,
47
+ lora_weights,
48
+ torch_dtype=torch.float16,
49
+ )
50
+ elif device == "mps":
51
+ model = LlamaForCausalLM.from_pretrained(
52
+ base_model,
53
+ device_map={"": device},
54
+ torch_dtype=torch.float16,
55
+ )
56
+ model = PeftModel.from_pretrained(
57
+ model,
58
+ lora_weights,
59
+ device_map={"": device},
60
+ torch_dtype=torch.float16,
61
+ )
62
+ else:
63
+ model = LlamaForCausalLM.from_pretrained(
64
+ base_model, device_map={"": device}, low_cpu_mem_usage=True
65
+ )
66
+ model = PeftModel.from_pretrained(
67
+ model,
68
+ lora_weights,
69
+ device_map={"": device},
70
+ )
71
+
72
+ # unwind broken decapoda-research config
73
+ model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
74
+ model.config.bos_token_id = 1
75
+ model.config.eos_token_id = 2
76
+
77
+ if not load_8bit:
78
+ model.half() # seems to fix bugs for some users.
79
+
80
+ model.eval()
81
+ if torch.__version__ >= "2" and sys.platform != "win32":
82
+ model = torch.compile(model)
83
+
84
+ def evaluate(
85
+ instruction,
86
+ input=None,
87
+ temperature=0.1,
88
+ top_p=0.75,
89
+ top_k=40,
90
+ num_beams=4,
91
+ max_new_tokens=256,
92
+ **kwargs,
93
+ ):
94
+ prompt = prompter.generate_prompt(instruction, input)
95
+ inputs = tokenizer(prompt, return_tensors="pt")
96
+ input_ids = inputs["input_ids"].to(device)
97
+ generation_config = GenerationConfig(
98
+ temperature=temperature,
99
+ top_p=top_p,
100
+ top_k=top_k,
101
+ num_beams=num_beams,
102
+ **kwargs,
103
+ )
104
+ with torch.no_grad():
105
+ generation_output = model.generate(
106
+ input_ids=input_ids,
107
+ generation_config=generation_config,
108
+ return_dict_in_generate=True,
109
+ output_scores=True,
110
+ max_new_tokens=max_new_tokens,
111
+ )
112
+ s = generation_output.sequences[0]
113
+ output = tokenizer.decode(s)
114
+ return prompter.get_response(output)
115
+
116
+ gr.Interface(
117
+ fn=evaluate,
118
+ inputs=[
119
+ gr.components.Textbox(
120
+ lines=2,
121
+ label="Instruction",
122
+ placeholder="Tell me about alpacas.",
123
+ ),
124
+ gr.components.Textbox(lines=2, label="Input", placeholder="none"),
125
+ gr.components.Slider(
126
+ minimum=0, maximum=1, value=0.1, label="Temperature"
127
+ ),
128
+ gr.components.Slider(
129
+ minimum=0, maximum=1, value=0.75, label="Top p"
130
+ ),
131
+ gr.components.Slider(
132
+ minimum=0, maximum=100, step=1, value=40, label="Top k"
133
+ ),
134
+ gr.components.Slider(
135
+ minimum=1, maximum=4, step=1, value=4, label="Beams"
136
+ ),
137
+ gr.components.Slider(
138
+ minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
139
+ ),
140
+ ],
141
+ outputs=[
142
+ gr.inputs.Textbox(
143
+ lines=5,
144
+ label="Output",
145
+ )
146
+ ],
147
+ title="🦙🌲 Alpaca-LoRA",
148
+ description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", # noqa: E501
149
+ ).launch(server_name=server_name, share=share_gradio)
150
+ # Old testing code follows.
151
+
152
+ """
153
+ # testing code for readme
154
+ for instruction in [
155
+ "Tell me about alpacas.",
156
+ "Tell me about the president of Mexico in 2019.",
157
+ "Tell me about the king of France in 2019.",
158
+ "List all Canadian provinces in alphabetical order.",
159
+ "Write a Python program that prints the first 10 Fibonacci numbers.",
160
+ "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", # noqa: E501
161
+ "Tell me five words that rhyme with 'shock'.",
162
+ "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
163
+ "Count up from 1 to 500.",
164
+ ]:
165
+ print("Instruction:", instruction)
166
+ print("Response:", evaluate(instruction))
167
+ print()
168
+ """
169
+
170
+
171
+ if __name__ == "__main__":
172
+ fire.Fire(main)