wozwize's picture
updating backend to implement either AI or traditional scoring values and return flagged phrases. updating table calls for supabase to incorporate new column
5c3b4a6
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel, HttpUrl
from typing import Dict, Any, List, Literal
import logging
import os
from supabase import AsyncClient
from dotenv import load_dotenv
from mediaunmasked.scrapers.article_scraper import ArticleScraper
from mediaunmasked.analyzers.scoring import MediaScorer
from mediaunmasked.utils.logging_config import setup_logging
# Load environment variables
load_dotenv()
# Initialize logging
setup_logging()
logger = logging.getLogger(__name__)
# Initialize router and dependencies
router = APIRouter(tags=["analysis"])
scraper = ArticleScraper()
# Get Supabase credentials
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
# Initialize Supabase client
if not SUPABASE_URL or not SUPABASE_KEY:
raise Exception("Supabase credentials not found in environment variables")
supabase = AsyncClient(SUPABASE_URL, SUPABASE_KEY)
# Define analysis mode type
AnalysisMode = Literal['ai', 'traditional']
class ArticleRequest(BaseModel):
url: HttpUrl
use_ai: bool = True # Default to AI-powered analysis
class MediaScoreDetails(BaseModel):
headline_analysis: Dict[str, Any]
sentiment_analysis: Dict[str, Any]
bias_analysis: Dict[str, Any]
evidence_analysis: Dict[str, Any]
class MediaScore(BaseModel):
media_unmasked_score: float
rating: str
details: MediaScoreDetails
class AnalysisResponse(BaseModel):
headline: str
content: str
sentiment: str
bias: str
bias_score: float
bias_percentage: float
media_score: MediaScore
analysis_mode: AnalysisMode
@router.post("/analyze", response_model=AnalysisResponse)
async def analyze_article(request: ArticleRequest) -> AnalysisResponse:
"""
Analyze an article for bias, sentiment, and credibility.
Args:
request: ArticleRequest containing the URL to analyze and analysis preferences
Returns:
AnalysisResponse with complete analysis results
Raises:
HTTPException: If scraping or analysis fails
"""
try:
# Determine analysis mode
analysis_mode: AnalysisMode = 'ai' if request.use_ai else 'traditional'
logger.info(f"Analyzing article: {request.url} (Analysis Mode: {analysis_mode})")
# Check cache with both URL and analysis mode
try:
cached_result = await supabase.table('article_analysis') \
.select('*') \
.eq('url', str(request.url)) \
.eq('analysis_mode', analysis_mode) \
.limit(1) \
.single() \
.execute()
if cached_result and cached_result.data:
logger.info(f"Found cached analysis for URL with {analysis_mode} mode")
return AnalysisResponse.parse_obj(cached_result.data)
except Exception as cache_error:
logger.warning(f"Cache lookup failed: {str(cache_error)}")
# Continue with analysis if cache lookup fails
# Scrape article
article = scraper.scrape_article(str(request.url))
if not article:
raise HTTPException(
status_code=400,
detail="Failed to scrape article content"
)
# Initialize scorer with specified analysis preference
scorer = MediaScorer(use_ai=request.use_ai)
# Analyze content
analysis = scorer.calculate_media_score(
article["headline"],
article["content"]
)
# Log raw values for debugging
logger.info("Raw values:")
logger.info(f"media_unmasked_score type: {type(analysis['media_unmasked_score'])}")
logger.info(f"media_unmasked_score value: {analysis['media_unmasked_score']}")
# Prepare response data
response_dict = {
"headline": str(article['headline']),
"content": str(article['content']),
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
"bias": str(analysis['details']['bias_analysis']['bias']),
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']),
"analysis_mode": analysis_mode,
"media_score": {
"media_unmasked_score": float(analysis['media_unmasked_score']),
"rating": str(analysis['rating']),
"details": {
"headline_analysis": {
"headline_vs_content_score": float(analysis['details']['headline_analysis']['headline_vs_content_score']),
"flagged_phrases": analysis['details']['headline_analysis'].get('flagged_phrases', [])
},
"sentiment_analysis": {
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
"manipulation_score": float(analysis['details']['sentiment_analysis']['manipulation_score']),
"flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases'])
},
"bias_analysis": {
"bias": str(analysis['details']['bias_analysis']['bias']),
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']),
"flagged_phrases": list(analysis['details']['bias_analysis']['flagged_phrases'])
},
"evidence_analysis": {
"evidence_based_score": float(analysis['details']['evidence_analysis']['evidence_based_score']),
"flagged_phrases": list(analysis['details']['evidence_analysis']['flagged_phrases'])
}
}
}
}
# Save to Supabase with analysis mode
try:
await supabase.table('article_analysis').upsert({
'url': str(request.url),
'headline': response_dict['headline'],
'content': response_dict['content'],
'sentiment': response_dict['sentiment'],
'bias': response_dict['bias'],
'bias_score': response_dict['bias_score'],
'bias_percentage': response_dict['bias_percentage'],
'media_score': response_dict['media_score'],
'analysis_mode': analysis_mode, # Store the analysis mode
'created_at': 'now()' # Use server timestamp
}, on_conflict='url,analysis_mode').execute() # Specify composite unique constraint
logger.info(f"Saved analysis to database with mode: {analysis_mode}")
except Exception as db_error:
logger.error(f"Failed to save to database: {str(db_error)}")
# Continue since we can still return the analysis even if saving fails
# Return the response
return AnalysisResponse.parse_obj(response_dict)
except Exception as e:
logger.error(f"Analysis failed: {str(e)}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Analysis failed: {str(e)}"
)