Spaces:
Running
Running
syncing with old implementation
Browse files
app/routers/analyze.py
CHANGED
@@ -3,7 +3,7 @@ from mediaunmasked.schemas.requests import AnalyzeRequest
|
|
3 |
from mediaunmasked.schemas.responses import AnalyzeResponse
|
4 |
from mediaunmasked.services.analyzer_service import AnalyzerService
|
5 |
from mediaunmasked.scrapers.article_scraper import ArticleScraper # Assuming you have a scraper module
|
6 |
-
from mediaunmasked.analyzers import
|
7 |
import logging
|
8 |
|
9 |
logger = logging.getLogger(__name__)
|
@@ -11,6 +11,7 @@ logger = logging.getLogger(__name__)
|
|
11 |
router = APIRouter(tags=["analysis"])
|
12 |
|
13 |
scraper = ArticleScraper()
|
|
|
14 |
|
15 |
@router.post("/analyze", response_model=AnalyzeResponse)
|
16 |
async def analyze_content(request: AnalyzeRequest):
|
@@ -24,7 +25,7 @@ async def analyze_content(request: AnalyzeRequest):
|
|
24 |
)
|
25 |
|
26 |
# Perform the analysis (like your old code)
|
27 |
-
analysis =
|
28 |
article["headline"],
|
29 |
article["content"]
|
30 |
)
|
|
|
3 |
from mediaunmasked.schemas.responses import AnalyzeResponse
|
4 |
from mediaunmasked.services.analyzer_service import AnalyzerService
|
5 |
from mediaunmasked.scrapers.article_scraper import ArticleScraper # Assuming you have a scraper module
|
6 |
+
from mediaunmasked.analyzers.scoring import MediaScorer # Assuming you have a scorer module
|
7 |
import logging
|
8 |
|
9 |
logger = logging.getLogger(__name__)
|
|
|
11 |
router = APIRouter(tags=["analysis"])
|
12 |
|
13 |
scraper = ArticleScraper()
|
14 |
+
scorer = MediaScorer()
|
15 |
|
16 |
@router.post("/analyze", response_model=AnalyzeResponse)
|
17 |
async def analyze_content(request: AnalyzeRequest):
|
|
|
25 |
)
|
26 |
|
27 |
# Perform the analysis (like your old code)
|
28 |
+
analysis = scorer.calculate_media_score(
|
29 |
article["headline"],
|
30 |
article["content"]
|
31 |
)
|
mediaunmasked/schemas/requests.py
CHANGED
@@ -1,5 +1,30 @@
|
|
1 |
-
from pydantic import BaseModel
|
|
|
2 |
|
3 |
class AnalyzeRequest(BaseModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
headline: str
|
5 |
-
content: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel, HttpUrl
|
2 |
+
from typing import Dict, Any, List
|
3 |
|
4 |
class AnalyzeRequest(BaseModel):
|
5 |
+
url: HttpUrl
|
6 |
+
|
7 |
+
def get_url_str(self) -> str:
|
8 |
+
# Convert HttpUrl to string safely
|
9 |
+
return str(self.url)
|
10 |
+
|
11 |
+
class MediaScoreDetails(BaseModel):
|
12 |
+
headline_analysis: Dict[str, Any]
|
13 |
+
sentiment_analysis: Dict[str, Any]
|
14 |
+
bias_analysis: Dict[str, Any]
|
15 |
+
evidence_analysis: Dict[str, Any]
|
16 |
+
|
17 |
+
class MediaScore(BaseModel):
|
18 |
+
media_unmasked_score: float
|
19 |
+
rating: str
|
20 |
+
details: MediaScoreDetails
|
21 |
+
|
22 |
+
class AnalysisResponse(BaseModel):
|
23 |
headline: str
|
24 |
+
content: str
|
25 |
+
sentiment: str
|
26 |
+
bias: str
|
27 |
+
bias_score: float
|
28 |
+
bias_percentage: float
|
29 |
+
flagged_phrases: List[str]
|
30 |
+
media_score: MediaScore
|
mediaunmasked/services/analyzer_service.py
CHANGED
@@ -1,4 +1,13 @@
|
|
1 |
from mediaunmasked.analyzers.headline_analyzer import HeadlineAnalyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class AnalyzerService:
|
4 |
def __init__(self):
|
@@ -6,4 +15,68 @@ class AnalyzerService:
|
|
6 |
|
7 |
async def analyze_content(self, headline: str, content: str):
|
8 |
result = self.headline_analyzer.analyze(headline, content)
|
9 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from mediaunmasked.analyzers.headline_analyzer import HeadlineAnalyzer
|
2 |
+
from mediaunmasked.schemas.requests import AnalyzeRequest, AnalysisResponse
|
3 |
+
from fastapi import HTTPException
|
4 |
+
from mediaunmasked.scrapers.article_scraper import ArticleScraper
|
5 |
+
from mediaunmasked.analyzers.scoring import MediaScorer
|
6 |
+
import logging
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
scraper = ArticleScraper()
|
10 |
+
scorer = MediaScorer()
|
11 |
|
12 |
class AnalyzerService:
|
13 |
def __init__(self):
|
|
|
15 |
|
16 |
async def analyze_content(self, headline: str, content: str):
|
17 |
result = self.headline_analyzer.analyze(headline, content)
|
18 |
+
return result
|
19 |
+
|
20 |
+
async def analyze_url(self, request: AnalyzeRequest) -> AnalysisResponse:
|
21 |
+
"""
|
22 |
+
Analyze an article for bias, sentiment, and credibility.
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
logger.info(f"Analyzing article: {request.url}")
|
26 |
+
|
27 |
+
# Scrape article
|
28 |
+
article = await scraper.scrape_article(request.get_url_str())
|
29 |
+
if not article:
|
30 |
+
raise HTTPException(
|
31 |
+
status_code=400,
|
32 |
+
detail="Failed to scrape article content"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Analyze content
|
36 |
+
analysis = scorer.calculate_media_score(
|
37 |
+
article["headline"],
|
38 |
+
article["content"]
|
39 |
+
)
|
40 |
+
|
41 |
+
# Construct response
|
42 |
+
response_dict = {
|
43 |
+
"headline": str(article['headline']),
|
44 |
+
"content": str(article['content']),
|
45 |
+
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
|
46 |
+
"bias": str(analysis['details']['bias_analysis']['bias']),
|
47 |
+
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
|
48 |
+
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']),
|
49 |
+
"flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases']),
|
50 |
+
"media_score": {
|
51 |
+
"media_unmasked_score": float(analysis['media_unmasked_score']),
|
52 |
+
"rating": str(analysis['rating']),
|
53 |
+
"details": {
|
54 |
+
"headline_analysis": {
|
55 |
+
"headline_vs_content_score": float(analysis['details']['headline_analysis']['headline_vs_content_score']),
|
56 |
+
"contradictory_phrases": analysis['details']['headline_analysis'].get('contradictory_phrases', [])
|
57 |
+
},
|
58 |
+
"sentiment_analysis": {
|
59 |
+
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
|
60 |
+
"manipulation_score": float(analysis['details']['sentiment_analysis']['manipulation_score']),
|
61 |
+
"flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases'])
|
62 |
+
},
|
63 |
+
"bias_analysis": {
|
64 |
+
"bias": str(analysis['details']['bias_analysis']['bias']),
|
65 |
+
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
|
66 |
+
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage'])
|
67 |
+
},
|
68 |
+
"evidence_analysis": {
|
69 |
+
"evidence_based_score": float(analysis['details']['evidence_analysis']['evidence_based_score'])
|
70 |
+
}
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
return AnalysisResponse.parse_obj(response_dict)
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"Analysis failed: {str(e)}", exc_info=True)
|
79 |
+
raise HTTPException(
|
80 |
+
status_code=500,
|
81 |
+
detail=f"Analysis failed: {str(e)}"
|
82 |
+
)
|