File size: 1,936 Bytes
3430cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from sentence_transformers import SentenceTransformer, util
from langchain.docstore.document import Document
import numpy as np
from config import *
import os

os.environ['CURL_CA_BUNDLE'] = ""
embedding_int = HuggingFaceBgeEmbeddings(
    model_name=MODEL_NAME,
    encode_kwargs=ENCODE_KWARGS,
    query_instruction=QUERY_INSTRUCTION
)

embedding_sim = HuggingFaceBgeEmbeddings(
    model_name=MODEL_NAME,
    encode_kwargs=ENCODE_KWARGS,
    query_instruction='Retrieve semantically similar text.'
)

db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding_int)
retriever = db.as_retriever(search_kwargs={"k": TOP_K})


def find_similar_occupation(target_occupation_query, berufe, top_k, similarity_func):
  
    # Pro kurs wird ein Document erstellt. Dieses enthält Metadaten sowie einen page_content. 
    # Der Inhalt von page_content wird embedded und so für die sucher verwendet.
    docs = []
    for index, beruf in berufe.iterrows():  
        # Create document.
        doc = Document(
            page_content= beruf['short name'] + ' ' + beruf['full name'] + ' ' + beruf['description'],  
            metadata={
                "id": beruf["id"],
                "name": beruf['short name'],
                "description": beruf["description"],
                "entry_requirements": beruf["entry requirements"]
            },
        )
        docs.append(doc)
    
    db_temp = Chroma.from_documents(documents = docs, embedding= embedding_sim, collection_metadata = {"hnsw:space": similarity_func})
    # Retriever will search for the top_5 most similar documents to the query.
    retriever_temp = db_temp.as_retriever(search_kwargs={"k": top_k})
    top_similar_occupations = retriever_temp.get_relevant_documents(target_occupation_query)

    return top_similar_occupations