File size: 24,836 Bytes
a707ccd
361c4d3
ea0faa1
361c4d3
 
 
b9d6d53
 
 
 
 
a707ccd
ccc6355
 
b9d6d53
 
6a12f54
 
 
 
ccc6355
6a12f54
 
b9d6d53
 
 
 
 
 
ccc6355
b9d6d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
6a12f54
07a46f8
 
 
 
 
7714f74
b27451f
7714f74
 
ccc6355
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
07a46f8
 
 
 
 
 
 
7714f74
07a46f8
 
 
 
 
 
 
7714f74
b27451f
ccc6355
7714f74
07a46f8
ccc6355
7714f74
ccc6355
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
07a46f8
 
 
 
7714f74
07a46f8
 
7714f74
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
07a46f8
 
ccc6355
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0faa1
b9d6d53
 
 
 
 
 
 
07a46f8
b9d6d53
 
 
 
07a46f8
b9d6d53
 
 
 
 
 
07a46f8
b9d6d53
 
ea0faa1
07a46f8
 
 
 
 
 
 
 
 
 
d858dc3
07a46f8
5138a85
07a46f8
 
 
 
b9d6d53
07a46f8
 
b9d6d53
07a46f8
b9d6d53
07a46f8
 
ccc6355
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d6d53
 
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d6d53
07a46f8
b9d6d53
07a46f8
 
 
 
b9d6d53
07a46f8
 
 
 
 
 
 
b9d6d53
07a46f8
 
b9d6d53
07a46f8
 
 
 
 
 
b9d6d53
 
07a46f8
 
 
 
 
 
 
 
 
b9d6d53
07a46f8
b9d6d53
ea0faa1
ccc6355
b9d6d53
ccc6355
07a46f8
ccc6355
 
 
b9d6d53
 
 
 
 
ccc6355
 
 
 
 
b9d6d53
ccc6355
07a46f8
 
ccc6355
07a46f8
 
b9d6d53
 
 
 
ccc6355
 
 
 
 
07a46f8
b9d6d53
 
07a46f8
ccc6355
07a46f8
 
 
ccc6355
 
 
 
 
5138a85
ccc6355
 
07a46f8
 
 
361c4d3
ccc6355
 
361c4d3
ccc6355
 
361c4d3
ccc6355
 
07a46f8
 
 
 
ccc6355
361c4d3
 
 
ccc6355
361c4d3
 
 
 
ccc6355
 
 
 
 
361c4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
 
 
07a46f8
ccc6355
 
 
 
 
07a46f8
ccc6355
 
07a46f8
 
 
ccc6355
b9d6d53
ccc6355
 
 
 
 
 
 
 
 
07a46f8
 
 
ccc6355
 
 
 
 
 
 
 
 
 
07a46f8
ccc6355
 
07a46f8
 
 
 
 
 
 
 
ccc6355
 
 
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
07a46f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc6355
07a46f8
 
 
 
ccc6355
 
 
ea0faa1
 
07a46f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import gradio as gr
import os
import spaces  # Import the spaces library
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import torch
from threading import Thread
import logging
from typing import Tuple, List, Dict, Generator

# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- Model & Quantization Settings ---
MODEL_ID = "unsloth/DeepSeek-R1-Distill-Qwen-7B-unsloth-bnb-4bit"
models: Dict[str, AutoModelForCausalLM] = {}
tokenizers: Dict[str, AutoTokenizer] = {}

bnb_config_4bit = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,  # Or torch.float16 if needed
)

def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
    """
    Lazy-load the model and tokenizer if not already loaded.
    Returns:
        Tuple[model, tokenizer]: The loaded model and tokenizer.
    """
    if "7B" not in models:
        logging.info(f"Loading 7B model: {MODEL_ID} on demand")
        try:
            tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_ID,
                quantization_config=bnb_config_4bit,
                torch_dtype=torch.bfloat16,  # Or torch.float16 if needed
                device_map='auto',
                trust_remote_code=True,
            )
            model.eval()  # Set the model to evaluation mode
            models["7B"] = model
            tokenizers["7B"] = tokenizer
            logging.info("Loaded 7B model on demand.")
        except Exception as e:
            logging.error(f"Failed to load model and tokenizer: {e}")
            raise e
    return models["7B"], tokenizers["7B"]

# --- Default Prompt Templates for Multiple Presets ---
default_prompts = {
    "coding": {
        "brainstorm": """**Coding Brainstorm (Round 1)**
As a Senior Code Analyst, analyze the following problem and list key challenges and potential approaches.

**User Request:**
{user_prompt}

**Guidelines:**
1. Identify coding challenges.
2. Suggest potential methods and approaches.
3. Highlight any critical edge cases.
""",
        "round2": """**Advanced Reasoning & Code Generation (Round 2)**
Based on your initial analysis:

**Initial Analysis:**
{brainstorm_response}

**User Request:**
{user_prompt}

**Task:**
1. Generate production-ready code with advanced reasoning.
2. Include a pun-filled birthday message with a coding twist within your output.
3. Comment the code clearly.
""",
        "synthesis": """**Synthesis & Final Refinement (Round 3)**
Review the detailed code and reasoning below, and synthesize a final, refined response that:
1. Combines the brainstorming insights and advanced code generation.
2. Summarizes the solution succinctly.
3. Provides any additional improvements.
 
**Detailed Code & Reasoning:**
{round2_response}
""",
        "rationale": """**Pun Generation and Rationale (Round 4)**
Based on the final refined response below, generate a clear, stand-alone pun-filled birthday message with a coding twist, then explain in detail why that pun was chosen.

Final Refined Response:
{final_response}

Your answer should:
1. Clearly output the pun as a separate line.
2. Explain the pun’s connection to birthdays and coding concepts (e.g., binary, syntax).
3. Describe any creative insights behind the choice.
"""
    },
    "math": {
        "brainstorm": """**Math Problem Brainstorm (Round 1)**
As an expert mathematician, analyze the following problem and outline key concepts and strategies.

**Problem:**
{user_prompt}

**Guidelines:**
1. Identify the mathematical concepts involved.
2. List potential strategies or methods.
3. Note any assumptions or conditions.
""",
        "round2": """**Solution Strategy Development (Round 2)**
Based on the initial analysis:

**Initial Analysis:**
{brainstorm_response}

**Problem:**
{user_prompt}

**Task:**
1. Develop a detailed strategy to solve the problem.
2. Include potential methods and intermediate steps.
""",
        "synthesis": """**Solution Synthesis (Round 3)**
Review the strategy and previous analysis below, and produce a refined, step-by-step solution that:
1. Clearly explains the solution path.
2. Highlights key steps and justifications.
3. Summarizes the final answer.
 
**Detailed Strategy:**
{round2_response}
""",
        "rationale": """**Solution Rationale (Round 4)**
Based on the final refined solution below, provide a detailed explanation of the key steps and mathematical insights.

Final Refined Solution:
{final_response}

Your response should:
1. Clearly explain why each step was taken.
2. Detail any assumptions and mathematical principles used.
3. Summarize the creative reasoning behind the solution.
"""
    },
    "writing": {
        "brainstorm": """**Creative Brainstorm (Round 1)**
As a seasoned writer, brainstorm creative ideas for the following writing prompt.

**Writing Prompt:**
{user_prompt}

**Guidelines:**
1. List key themes and creative directions.
2. Suggest multiple approaches to the narrative.
3. Highlight any unique stylistic ideas.
""",
        "round2": """**Outline Generation (Round 2)**
Based on the brainstorming below:

**Brainstormed Ideas:**
{brainstorm_response}

**Writing Prompt:**
{user_prompt}

**Task:**
1. Generate a detailed outline for a creative piece.
2. Organize the ideas into a coherent structure.
3. Provide bullet points or sections for the narrative.
""",
        "synthesis": """**Draft Writing (Round 3)**
Review the outline below and produce a refined draft of the creative piece that:
1. Synthesizes the brainstorming insights and the outline.
2. Provides a coherent and engaging narrative.
3. Includes stylistic and thematic elements.
 
**Outline:**
{round2_response}
""",
        "rationale": """**Final Editing and Rationale (Round 4)**
Based on the final draft below, refine the piece further and provide a detailed explanation of your creative choices.

Final Draft:
{final_response}

Your answer should:
1. Present the final refined text.
2. Explain the narrative choices, stylistic decisions, and thematic connections.
3. Detail any creative insights that influenced the final version.
"""
    }
}

# --- Domain Detection ---
def detect_domain(user_prompt: str) -> str:
    """
    Detect the domain based on keywords.
    Args:
        user_prompt (str): The user query.
    Returns:
        str: One of 'math', 'writing', or 'coding' (defaulting to coding).
    """
    prompt_lower = user_prompt.lower()
    math_keywords = ["solve", "integral", "derivative", "equation", "proof", "calculate", "sum", "product"]
    writing_keywords = ["write", "story", "essay", "novel", "poem", "article", "narrative", "creative"]
    coding_keywords = ["code", "program", "debug", "compile", "algorithm", "function"]
    
    if any(kw in prompt_lower for kw in math_keywords):
        logging.info("Domain detected as: math")
        return "math"
    elif any(kw in prompt_lower for kw in writing_keywords):
        logging.info("Domain detected as: writing")
        return "writing"
    elif any(kw in prompt_lower for kw in coding_keywords):
        logging.info("Domain detected as: coding")
        return "coding"
    else:
        logging.info("No specific domain detected; defaulting to coding")
        return "coding"

# --- Memory Management ---
class MemoryManager:
    """Encapsulate shared memory for storing and retrieving conversation items."""
    def __init__(self) -> None:
        self.shared_memory: List[str] = []

    def store(self, item: str) -> None:
        """Store a memory item and log an excerpt."""
        self.shared_memory.append(item)
        logging.info(f"[Memory Stored]: {item[:50]}...")

    def retrieve(self, query: str, top_k: int = 3) -> List[str]:
        """Retrieve recent memory items containing the query text."""
        query_lower = query.lower()
        relevant = [item for item in self.shared_memory if query_lower in item.lower()]
        if not relevant:
            logging.info("[Memory Retrieval]: No relevant memories found.")
        else:
            logging.info(f"[Memory Retrieval]: Found {len(relevant)} relevant memories.")
        return relevant[-top_k:]

global_memory_manager = MemoryManager()

# --- Unified Generation Function ---
def generate_response(model, tokenizer, prompt: str, max_tokens: int, temperature: float, top_p: float) -> str:
    """Generate a response for a given prompt."""
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
    )
    thread = Thread(target=model.generate, kwargs=kwargs)
    with torch.no_grad():
        thread.start()
    response = ""
    try:
        for text in streamer:
            response += text
    except Exception as e:
        logging.error(f"Error during generation: {e}")
        raise e
    thread.join()
    return response

# --- Multi-Round Agent Class ---
class MultiRoundAgent:
    """
    Encapsulate the multi-round prompt chaining and response generation.
    This class runs a 4-round pipeline based on the given preset.
    """
    def __init__(self, model, tokenizer, prompt_templates: Dict[str, str], memory_manager: MemoryManager):
        self.model = model
        self.tokenizer = tokenizer
        self.prompt_templates = prompt_templates
        self.memory_manager = memory_manager

    def run_pipeline(self, user_prompt: str, params: Dict, show_raw: bool = False) -> Generator[str, None, None]:
        # Round 1: Brainstorming / Analysis
        logging.info("--- Round 1 ---")
        prompt_r1 = self.prompt_templates["brainstorm"].format(user_prompt=user_prompt)
        r1 = generate_response(self.model, self.tokenizer, prompt_r1, params.get("max_new_tokens"), params.get("temp"), params.get("top_p"))
        self.memory_manager.store(f"Round 1 Response: {r1}")

        # Round 2: Secondary Generation (strategy/outline/code)
        logging.info("--- Round 2 ---")
        prompt_r2 = self.prompt_templates["round2"].format(brainstorm_response=r1, user_prompt=user_prompt)
        r2 = generate_response(self.model, self.tokenizer, prompt_r2, params.get("max_new_tokens") + 100, params.get("temp"), params.get("top_p"))
        self.memory_manager.store(f"Round 2 Response: {r2}")

        # Round 3: Synthesis & Refinement (streaming updates)
        logging.info("--- Round 3 ---")
        prompt_r3 = self.prompt_templates["synthesis"].format(round2_response=r2)
        input_ids_r3 = self.tokenizer.encode(prompt_r3, return_tensors="pt").to(self.model.device)
        streamer_r3 = TextIteratorStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
        kwargs_r3 = dict(
            input_ids=input_ids_r3,
            streamer=streamer_r3,
            max_new_tokens=params.get("max_new_tokens") // 2,
            temperature=params.get("temp"),
            top_p=params.get("top_p")
        )
        thread_r3 = Thread(target=self.model.generate, kwargs=kwargs_r3)
        with torch.no_grad():
            thread_r3.start()
        r3 = ""
        try:
            for text in streamer_r3:
                r3 += text
                yield r3  # Yield progressive updates from Round 3
        except Exception as e:
            logging.error(f"Error during Round 3 streaming: {e}")
            raise e
        thread_r3.join()
        self.memory_manager.store(f"Final Synthesis Response: {r3}")

        # Round 4: Rationale / Final Output
        logging.info("--- Round 4 ---")
        prompt_r4 = self.prompt_templates["rationale"].format(final_response=r3)
        r4 = generate_response(self.model, self.tokenizer, prompt_r4, 300, params.get("temp"), params.get("top_p"))
        self.memory_manager.store(f"Round 4 Response: {r4}")

        # Construct final output based on the show_raw flag.
        if show_raw:
            final_output = (
                f"{r4}\n\n[Raw Outputs]\n"
                f"Round 1:\n{r1}\n\n"
                f"Round 2:\n{r2}\n\n"
                f"Round 3:\n{r3}\n\n"
                f"Round 4:\n{r4}\n"
            )
        else:
            final_output = r4

        yield final_output

# --- Swarm Agent Iterative Function ---
@spaces.GPU(duration=180)  # Adjust duration as needed
def swarm_agent_iterative(user_prompt: str, temp: float, top_p: float, max_new_tokens: int, memory_top_k: int,
                          prompt_templates: Dict[str, str], domain: str, show_raw: bool) -> Generator[str, None, None]:
    """
    Wraps the multi-round agent functionality. Depending on the detected domain,
    it runs the 4-round pipeline.
    """
    model, tokenizer = get_model_and_tokenizer()
    agent = MultiRoundAgent(model, tokenizer, prompt_templates, global_memory_manager)
    params = {"temp": temp, "top_p": top_p, "max_new_tokens": max_new_tokens}
    return agent.run_pipeline(user_prompt, params, show_raw)

# --- Explanation Function for Additional Requests ---
def handle_explanation_request(user_prompt: str, history: List) -> str:
    """
    Retrieve stored rationale and additional context from conversation history,
    then generate an explanation.
    """
    retrieved = global_memory_manager.retrieve("Round 4 Response:", top_k=3)
    explanation_prompt = "Below are previous final outputs and related context from our conversation:\n"
    if retrieved:
        for item in retrieved:
            explanation_prompt += f"- {item}\n"
    else:
        explanation_prompt += "No stored final output found.\n"
    
    explanation_prompt += "\nRecent related exchanges:\n"
    for chat in history:
        if ("explain" in chat[0].lower()) or (chat[1] and "explain" in chat[1].lower()):
            explanation_prompt += f"User: {chat[0]}\nAssistant: {chat[1]}\n"
    
    explanation_prompt += "\nBased on the above context, please provide a detailed explanation of the creative choices."
    model, tokenizer = get_model_and_tokenizer()
    explanation = generate_response(model, tokenizer, explanation_prompt, 300, 0.7, 0.9)
    return explanation

# --- Helper to Format History ---
def format_history(history: List) -> List[Dict[str, str]]:
    """
    Convert history (list of [user, assistant] pairs) into a list of message dictionaries.
    """
    messages = []
    for item in history:
        if isinstance(item, (list, tuple)) and len(item) == 2:
            user_msg, assistant_msg = item
            messages.append({"role": "user", "content": user_msg})
            if assistant_msg:
                messages.append({"role": "assistant", "content": assistant_msg})
        elif isinstance(item, dict):
            messages.append(item)
    return messages

# --- Gradio Chat Interface Function ---
def gradio_interface(message: str, history: List, param_state: Dict, prompt_state: Dict) -> Generator[List[Dict[str, str]], None, None]:
    """
    Called by Gradio's ChatInterface. Uses current generation parameters and preset prompt templates.
    If the user asks for an explanation, routes the request accordingly.
    """
    if "explain" in message.lower():
        explanation = handle_explanation_request(message, history)
        history = history + [[message, explanation]]
        yield format_history(history)
        return

    try:
        temp = float(param_state.get("temperature", 0.5))
        top_p = float(param_state.get("top_p", 0.9))
        max_new_tokens = int(param_state.get("max_new_tokens", 300))
        memory_top_k = int(param_state.get("memory_top_k", 2))
        show_raw = bool(param_state.get("show_raw_output", False))
    except Exception as e:
        logging.error(f"Parameter conversion error: {e}")
        temp, top_p, max_new_tokens, memory_top_k, show_raw = 0.5, 0.9, 300, 2, False

    domain = detect_domain(message)
    # Get the prompt templates for the detected domain; default to coding if not set.
    prompt_templates = prompt_state.get(domain, default_prompts.get(domain, default_prompts["coding"]))

    history = history + [[message, ""]]
    for partial_response in swarm_agent_iterative(
        user_prompt=message,
        temp=temp,
        top_p=top_p,
        max_new_tokens=max_new_tokens,
        memory_top_k=memory_top_k,
        prompt_templates=prompt_templates,
        domain=domain,
        show_raw=show_raw
    ):
        history[-1][1] = partial_response
        yield format_history(history)

# --- UI Settings & Styling ---
ui_description = '''
<div>
  <h1 style="text-align: center;">DeepSeek Agent Swarm Chat</h1>
  <p style="text-align: center;">
    Multi-round agent with 4-round prompt chaining for three presets:
    <br>- Coding
    <br>- Math
    <br>- Writing
  </p>
</div>
'''

ui_license = """
<p/>
---
"""

ui_placeholder = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
  <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek Agent Swarm</h1>
  <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# --- Gradio UI ---
with gr.Blocks(css=css, title="DeepSeek Agent Swarm Chat") as demo:
    gr.Markdown(ui_description)
    # Hidden states for parameters and prompt configurations.
    param_state = gr.State({
        "temperature": 0.5,
        "top_p": 0.9,
        "max_new_tokens": 300,
        "memory_top_k": 2,
        "show_raw_output": False,  # New parameter for raw output
    })
    prompt_state = gr.State({
        "coding": default_prompts["coding"],
        "math": default_prompts["math"],
        "writing": default_prompts["writing"],
    })

    with gr.Tabs():
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(height=450, placeholder=ui_placeholder, label="Agent Swarm Output", type="messages")
            gr.ChatInterface(
                fn=gradio_interface,
                chatbot=chatbot,
                additional_inputs=[param_state, prompt_state],
                examples=[
                    ['How can we build a robust web service that scales efficiently under load?'],
                    ['Solve the integral of x^2 from 0 to 1.'],
                    ['Write a short story about a mysterious writer in a busy city.'],
                    ['Create a pun-filled birthday message with a coding twist.']
                ],
                cache_examples=False,
                type="messages",
            )
        with gr.Tab("Parameters"):
            gr.Markdown("### Generation Parameters")
            temp_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
            top_p_slider = gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P")
            max_tokens_num = gr.Number(value=300, label="Max new tokens", precision=0)
            memory_topk_slider = gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Memory Retrieval Top K")
            show_raw_checkbox = gr.Checkbox(value=False, label="Show Raw Output")  # New checkbox for raw output
            save_params_btn = gr.Button("Save Parameters")
            save_params_btn.click(
                lambda t, p, m, k, s: {
                    "temperature": t,
                    "top_p": p,
                    "max_new_tokens": m,
                    "memory_top_k": k,
                    "show_raw_output": s
                },
                inputs=[temp_slider, top_p_slider, max_tokens_num, memory_topk_slider, show_raw_checkbox],
                outputs=param_state,
            )
        with gr.Tab("Prompt Config"):
            gr.Markdown("### Configure Prompt Templates for Each Preset")
            with gr.Tabs():
                with gr.Tab("Coding"):
                    prompt_brainstorm_box_code = gr.Textbox(
                        value=default_prompts["coding"]["brainstorm"],
                        label="Brainstorm Prompt (Coding)",
                        lines=8,
                    )
                    prompt_round2_box_code = gr.Textbox(
                        value=default_prompts["coding"]["round2"],
                        label="Round 2 Prompt (Coding)",
                        lines=8,
                    )
                    prompt_synthesis_box_code = gr.Textbox(
                        value=default_prompts["coding"]["synthesis"],
                        label="Synthesis Prompt (Coding)",
                        lines=8,
                    )
                    prompt_rationale_box_code = gr.Textbox(
                        value=default_prompts["coding"]["rationale"],
                        label="Rationale Prompt (Coding)",
                        lines=8,
                    )
                with gr.Tab("Math"):
                    prompt_brainstorm_box_math = gr.Textbox(
                        value=default_prompts["math"]["brainstorm"],
                        label="Brainstorm Prompt (Math)",
                        lines=8,
                    )
                    prompt_round2_box_math = gr.Textbox(
                        value=default_prompts["math"]["round2"],
                        label="Round 2 Prompt (Math)",
                        lines=8,
                    )
                    prompt_synthesis_box_math = gr.Textbox(
                        value=default_prompts["math"]["synthesis"],
                        label="Synthesis Prompt (Math)",
                        lines=8,
                    )
                    prompt_rationale_box_math = gr.Textbox(
                        value=default_prompts["math"]["rationale"],
                        label="Rationale Prompt (Math)",
                        lines=8,
                    )
                with gr.Tab("Writing"):
                    prompt_brainstorm_box_writing = gr.Textbox(
                        value=default_prompts["writing"]["brainstorm"],
                        label="Brainstorm Prompt (Writing)",
                        lines=8,
                    )
                    prompt_round2_box_writing = gr.Textbox(
                        value=default_prompts["writing"]["round2"],
                        label="Round 2 Prompt (Writing)",
                        lines=8,
                    )
                    prompt_synthesis_box_writing = gr.Textbox(
                        value=default_prompts["writing"]["synthesis"],
                        label="Synthesis Prompt (Writing)",
                        lines=8,
                    )
                    prompt_rationale_box_writing = gr.Textbox(
                        value=default_prompts["writing"]["rationale"],
                        label="Rationale Prompt (Writing)",
                        lines=8,
                    )
            save_prompts_btn = gr.Button("Save Prompts")
            def save_prompts(code_brain, code_r2, code_syn, code_rat, math_brain, math_r2, math_syn, math_rat, writing_brain, writing_r2, writing_syn, writing_rat):
                return {
                    "coding": {
                        "brainstorm": code_brain,
                        "round2": code_r2,
                        "synthesis": code_syn,
                        "rationale": code_rat,
                    },
                    "math": {
                        "brainstorm": math_brain,
                        "round2": math_r2,
                        "synthesis": math_syn,
                        "rationale": math_rat,
                    },
                    "writing": {
                        "brainstorm": writing_brain,
                        "round2": writing_r2,
                        "synthesis": writing_syn,
                        "rationale": writing_rat,
                    }
                }
            save_prompts_btn.click(
                save_prompts,
                inputs=[prompt_brainstorm_box_code, prompt_round2_box_code, prompt_synthesis_box_code, prompt_rationale_box_code,
                        prompt_brainstorm_box_math, prompt_round2_box_math, prompt_synthesis_box_math, prompt_rationale_box_math,
                        prompt_brainstorm_box_writing, prompt_round2_box_writing, prompt_synthesis_box_writing, prompt_rationale_box_writing],
                outputs=prompt_state,
            )
    gr.Markdown(ui_license)

if __name__ == "__main__":
    demo.launch()