|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import spaces |
|
|
|
|
|
model_ids = { |
|
"1.5B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
|
"7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", |
|
} |
|
|
|
|
|
default_prompt_1_5b = """**Code Analysis Task** |
|
As a Senior Code Analyst, analyze this programming problem: |
|
|
|
**User Request:** |
|
{user_prompt} |
|
|
|
**Relevant Context:** |
|
{context_1_5b} |
|
|
|
**Analysis Required:** |
|
1. Briefly break down the problem, including key constraints and edge cases. |
|
2. Suggest 2-3 potential approach options (algorithms/data structures). |
|
3. Recommend a primary strategy and explain your reasoning concisely. |
|
4. Provide a very brief initial pseudocode sketch of the core logic.""" |
|
|
|
|
|
default_prompt_7b = """**Code Implementation Task** |
|
As a Principal Software Engineer, develop a solution based on this analysis: |
|
|
|
**Initial Analysis:** |
|
{response_1_5b} |
|
|
|
**Relevant Context:** |
|
{context_7b} |
|
|
|
**Solution Development Requirements:** |
|
1. Present an optimized solution approach, justifying your algorithm choices. |
|
2. Provide production-grade code in [Python/JS/etc.] (infer language). Include error handling and comments. |
|
3. Outline a testing plan with key test cases. |
|
4. Briefly suggest optimization opportunities and debugging tips.""" |
|
|
|
|
|
|
|
def load_model_and_tokenizer(model_id): |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map='auto', |
|
trust_remote_code=True |
|
) |
|
return model, tokenizer |
|
|
|
|
|
models = {} |
|
tokenizers = {} |
|
for size, model_id in model_ids.items(): |
|
print(f"Loading {size} model: {model_id}") |
|
models[size], tokenizers[size] = load_model_and_tokenizer(model_id) |
|
print(f"Loaded {size} model.") |
|
|
|
|
|
shared_memory = [] |
|
|
|
def store_in_memory(memory_item): |
|
shared_memory.append(memory_item) |
|
print(f"\n[Memory Stored]: {memory_item[:50]}...") |
|
|
|
def retrieve_from_memory(query, top_k=2): |
|
relevant_memories = [] |
|
query_lower = query.lower() |
|
for memory_item in shared_memory: |
|
if query_lower in memory_item.lower(): |
|
relevant_memories.append(memory_item) |
|
|
|
if not relevant_memories: |
|
print("\n[Memory Retrieval]: No relevant memories found.") |
|
return [] |
|
|
|
print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.") |
|
return relevant_memories[:top_k] |
|
|
|
|
|
|
|
@spaces.GPU |
|
def swarm_agent_sequential_rag(user_prompt, prompt_1_5b_template, prompt_7b_template, temperature=0.5, top_p=0.9, max_new_tokens=300): |
|
global shared_memory |
|
shared_memory = [] |
|
|
|
print("\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED ---") |
|
|
|
|
|
print("\n[1.5B Model - Brainstorming] - GPU Accelerated") |
|
retrieved_memory_1_5b = retrieve_from_memory(user_prompt) |
|
context_1_5b = "\n".join([f"- {mem}" for mem in retrieved_memory_1_5b]) if retrieved_memory_1_5b else "No relevant context found in memory." |
|
|
|
|
|
prompt_1_5b = prompt_1_5b_template.format(user_prompt=user_prompt, context_1_5b=context_1_5b) |
|
|
|
input_ids_1_5b = tokenizers["1.5B"].encode(prompt_1_5b, return_tensors="pt").to(models["1.5B"].device) |
|
output_1_5b = models["1.5B"].generate( |
|
input_ids_1_5b, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
response_1_5b = tokenizers["1.5B"].decode(output_1_5b[0], skip_special_tokens=True) |
|
print(f"1.5B Response:\n{response_1_5b}") |
|
store_in_memory(f"1.5B Model Initial Response: {response_1_5b[:200]}...") |
|
|
|
|
|
print("\n[7B Model - Elaboration] - GPU Accelerated") |
|
retrieved_memory_7b = retrieve_from_memory(response_1_5b) |
|
context_7b = "\n".join([f"- {mem}" for mem in retrieved_memory_7b]) if retrieved_memory_7b else "No relevant context found in memory." |
|
|
|
|
|
prompt_7b = prompt_7b_template.format(response_1_5b=response_1_5b, context_7b=context_7b) |
|
|
|
|
|
input_ids_7b = tokenizers["7B"].encode(prompt_7b, return_tensors="pt").to(models["7B"].device) |
|
output_7b = models["7B"].generate( |
|
input_ids_7b, |
|
max_new_tokens=max_new_tokens + 100, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
response_7b = tokenizers["7B"].decode(output_7b[0], skip_special_tokens=True) |
|
print(f"7B Response:\n{response_7b}") |
|
store_in_memory(f"7B Model Elaborated Response: {response_7b[:200]}...") |
|
|
|
return response_7b |
|
|
|
|
|
|
|
def gradio_interface(message, history, temp, top_p, max_tokens, prompt_1_5b_text, prompt_7b_text): |
|
|
|
response = swarm_agent_sequential_rag( |
|
message, |
|
prompt_1_5b_template=prompt_1_5b_text, |
|
prompt_7b_template=prompt_7b_text, |
|
temperature=temp, |
|
top_p=top_p, |
|
max_new_tokens=int(max_tokens) |
|
) |
|
return response |
|
|
|
iface = gr.ChatInterface( |
|
fn=gradio_interface, |
|
|
|
additional_inputs=[ |
|
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature"), |
|
gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P"), |
|
gr.Number(value=300, label="Max Tokens", precision=0), |
|
gr.Textbox(value=default_prompt_1_5b, lines=10, label="1.5B Model Prompt Template"), |
|
gr.Textbox(value=default_prompt_7b, lines=10, label="7B Model Prompt Template"), |
|
], |
|
title="DeepSeek Agent Swarm Chat (ZeroGPU Demo - 2 Models) - PROMPT CUSTOMIZATION", |
|
description="Chat with a DeepSeek agent swarm (1.5B, 7B) with shared memory, adjustable settings, **and customizable prompts!** **GPU accelerated using ZeroGPU!** (Requires Pro Space)", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |