r1-agents / app.py
wuhp's picture
Update app.py
b27451f verified
raw
history blame
7.22 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces # Import the spaces library
# Model IDs from Hugging Face Hub (now only 1.5B and 7B)
model_ids = {
"1.5B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
}
# Revised Default Prompts
default_prompt_1_5b = """**Code Analysis Task**
As a Senior Code Analyst, analyze this programming problem:
**User Request:**
{user_prompt}
**Relevant Context:**
{context_1_5b}
**Analysis Required:**
1. Briefly break down the problem, including key constraints and edge cases.
2. Suggest 2-3 potential approach options (algorithms/data structures).
3. Recommend a primary strategy and explain your reasoning concisely.
4. Provide a very brief initial pseudocode sketch of the core logic."""
default_prompt_7b = """**Code Implementation Task**
As a Principal Software Engineer, develop a solution based on this analysis:
**Initial Analysis:**
{response_1_5b}
**Relevant Context:**
{context_7b}
**Solution Development Requirements:**
1. Present an optimized solution approach, justifying your algorithm choices.
2. Provide production-grade code in [Python/JS/etc.] (infer language). Include error handling and comments.
3. Outline a testing plan with key test cases.
4. Briefly suggest optimization opportunities and debugging tips."""
# Function to load model and tokenizer (same)
def load_model_and_tokenizer(model_id):
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Or torch.float16 if you prefer
device_map='auto', # Let accelerate decide (will use GPU when @spaces.GPU active)
trust_remote_code=True
)
return model, tokenizer
# Load the selected models and tokenizers (same)
models = {}
tokenizers = {}
for size, model_id in model_ids.items():
print(f"Loading {size} model: {model_id}")
models[size], tokenizers[size] = load_model_and_tokenizer(model_id)
print(f"Loaded {size} model.")
# --- Shared Memory Implementation --- (Same)
shared_memory = []
def store_in_memory(memory_item):
shared_memory.append(memory_item)
print(f"\n[Memory Stored]: {memory_item[:50]}...")
def retrieve_from_memory(query, top_k=2):
relevant_memories = []
query_lower = query.lower()
for memory_item in shared_memory:
if query_lower in memory_item.lower():
relevant_memories.append(memory_item)
if not relevant_memories:
print("\n[Memory Retrieval]: No relevant memories found.")
return []
print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.")
return relevant_memories[:top_k]
# --- Swarm Agent Function with Shared Memory (RAG) - DECORATED with @spaces.GPU ---
@spaces.GPU # <---- GPU DECORATOR ADDED HERE!
def swarm_agent_sequential_rag(user_prompt, prompt_1_5b_template, prompt_7b_template, temperature=0.5, top_p=0.9, max_new_tokens=300): # Lowered default temperature
global shared_memory
shared_memory = [] # Clear memory for each new request
print("\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED ---") # Updated message
# 1.5B Model - Brainstorming/Initial Draft (same logic)
print("\n[1.5B Model - Brainstorming] - GPU Accelerated") # Added GPU indication
retrieved_memory_1_5b = retrieve_from_memory(user_prompt)
context_1_5b = "\n".join([f"- {mem}" for mem in retrieved_memory_1_5b]) if retrieved_memory_1_5b else "No relevant context found in memory."
# Use user-provided prompt template for 1.5B model
prompt_1_5b = prompt_1_5b_template.format(user_prompt=user_prompt, context_1_5b=context_1_5b)
input_ids_1_5b = tokenizers["1.5B"].encode(prompt_1_5b, return_tensors="pt").to(models["1.5B"].device)
output_1_5b = models["1.5B"].generate(
input_ids_1_5b,
max_new_tokens=max_new_tokens, # Use user-defined max_new_tokens
temperature=temperature, # Use user-defined temperature
top_p=top_p, # Use user-defined top_p
do_sample=True
)
response_1_5b = tokenizers["1.5B"].decode(output_1_5b[0], skip_special_tokens=True)
print(f"1.5B Response:\n{response_1_5b}")
store_in_memory(f"1.5B Model Initial Response: {response_1_5b[:200]}...")
# 7B Model - Elaboration and Detail (same logic)
print("\n[7B Model - Elaboration] - GPU Accelerated") # Added GPU indication
retrieved_memory_7b = retrieve_from_memory(response_1_5b)
context_7b = "\n".join([f"- {mem}" for mem in retrieved_memory_7b]) if retrieved_memory_7b else "No relevant context found in memory."
# Use user-provided prompt template for 7B model
prompt_7b = prompt_7b_template.format(response_1_5b=response_1_5b, context_7b=context_7b)
input_ids_7b = tokenizers["7B"].encode(prompt_7b, return_tensors="pt").to(models["7B"].device)
output_7b = models["7B"].generate(
input_ids_7b,
max_new_tokens=max_new_tokens + 100, # Slightly more tokens for 7B
temperature=temperature, # Use user-defined temperature
top_p=top_p, # Use user-defined top_p
do_sample=True
)
response_7b = tokenizers["7B"].decode(output_7b[0], skip_special_tokens=True)
print(f"7B Response:\n{response_7b}")
store_in_memory(f"7B Model Elaborated Response: {response_7b[:200]}...")
return response_7b # Now returns the 7B model's response as final
# --- Gradio ChatInterface --- (same interface definition)
def gradio_interface(message, history, temp, top_p, max_tokens, prompt_1_5b_text, prompt_7b_text): # Accept prompt textboxes
# history is automatically managed by ChatInterface
response = swarm_agent_sequential_rag(
message,
prompt_1_5b_template=prompt_1_5b_text, # Pass prompt templates
prompt_7b_template=prompt_7b_text,
temperature=temp,
top_p=top_p,
max_new_tokens=int(max_tokens) # Ensure max_tokens is an integer
)
return response
iface = gr.ChatInterface( # Using ChatInterface now
fn=gradio_interface,
# Define additional inputs for settings and prompts
additional_inputs=[
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature"), # Lowered default temp to 0.5
gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P"),
gr.Number(value=300, label="Max Tokens", precision=0), # Use Number for integer tokens
gr.Textbox(value=default_prompt_1_5b, lines=10, label="1.5B Model Prompt Template"), # Textbox for 1.5B prompt
gr.Textbox(value=default_prompt_7b, lines=10, label="7B Model Prompt Template"), # Textbox for 7B prompt
],
title="DeepSeek Agent Swarm Chat (ZeroGPU Demo - 2 Models) - PROMPT CUSTOMIZATION", # Updated title
description="Chat with a DeepSeek agent swarm (1.5B, 7B) with shared memory, adjustable settings, **and customizable prompts!** **GPU accelerated using ZeroGPU!** (Requires Pro Space)", # Updated description
)
if __name__ == "__main__":
iface.launch() # Only launch locally if running this script directly