import torch
from torchvision import transforms, models

def create_vit(output_classes: int = 6, seed: int = 233):
    
    transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    model = models.vit_b_16()

    for param in model.parameters():
        param.requires_grade = False
    
    torch.manual_seed(seed)

    model.heads = torch.nn.Sequential(
        torch.nn.Dropout(0.3),
        torch.nn.Linear(in_features=768, out_features=output_classes)
    )

    return model, transform