Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow import keras
|
5 |
+
from tensorflow.keras import layers
|
6 |
+
from tensorflow.keras.applications import efficientnet
|
7 |
+
from tensorflow.keras.layers import TextVectorization
|
8 |
+
|
9 |
+
# Desired image dimensions
|
10 |
+
IMAGE_SIZE = (299, 299)
|
11 |
+
# Vocabulary size
|
12 |
+
VOCAB_SIZE = 10000
|
13 |
+
# Fixed length allowed for any sequence
|
14 |
+
SEQ_LENGTH = 25
|
15 |
+
# Dimension for the image embeddings and token embeddings
|
16 |
+
EMBED_DIM = 512
|
17 |
+
# Per-layer units in the feed-forward network
|
18 |
+
FF_DIM = 512
|
19 |
+
|
20 |
+
# text preprocessing
|
21 |
+
def custom_standardization(input_string):
|
22 |
+
lowercase = tf.strings.lower(input_string)
|
23 |
+
return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")
|
24 |
+
|
25 |
+
strip_chars = "!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"
|
26 |
+
strip_chars = strip_chars.replace("<", "")
|
27 |
+
strip_chars = strip_chars.replace(">", "")
|
28 |
+
|
29 |
+
vectorization = TextVectorization(
|
30 |
+
max_tokens=VOCAB_SIZE,
|
31 |
+
output_mode="int",
|
32 |
+
output_sequence_length=SEQ_LENGTH,
|
33 |
+
standardize=custom_standardization,
|
34 |
+
)
|
35 |
+
vectorization.adapt(text_data)
|
36 |
+
|
37 |
+
# image preprocessing
|
38 |
+
def decode_and_resize(img_path):
|
39 |
+
img = tf.io.read_file(img_path)
|
40 |
+
img = tf.image.decode_jpeg(img, channels=3)
|
41 |
+
img = tf.image.resize(img, IMAGE_SIZE)
|
42 |
+
img = tf.image.convert_image_dtype(img, tf.float32)
|
43 |
+
return img
|
44 |
+
|
45 |
+
# Data augmentation for image data
|
46 |
+
image_augmentation = keras.Sequential(
|
47 |
+
[
|
48 |
+
layers.RandomFlip("horizontal"),
|
49 |
+
layers.RandomRotation(0.2),
|
50 |
+
layers.RandomContrast(0.3),
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
# model building
|
55 |
+
def get_cnn_model():
|
56 |
+
base_model = efficientnet.EfficientNetB0(
|
57 |
+
input_shape=(*IMAGE_SIZE, 3), include_top=False, weights="imagenet",
|
58 |
+
)
|
59 |
+
# We freeze our feature extractor
|
60 |
+
base_model.trainable = False
|
61 |
+
base_model_out = base_model.output
|
62 |
+
base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)
|
63 |
+
cnn_model = keras.models.Model(base_model.input, base_model_out)
|
64 |
+
return cnn_model
|
65 |
+
|
66 |
+
|
67 |
+
class TransformerEncoderBlock(layers.Layer):
|
68 |
+
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
self.embed_dim = embed_dim
|
71 |
+
self.dense_dim = dense_dim
|
72 |
+
self.num_heads = num_heads
|
73 |
+
self.attention_1 = layers.MultiHeadAttention(
|
74 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.0
|
75 |
+
)
|
76 |
+
self.layernorm_1 = layers.LayerNormalization()
|
77 |
+
self.layernorm_2 = layers.LayerNormalization()
|
78 |
+
self.dense_1 = layers.Dense(embed_dim, activation="relu")
|
79 |
+
|
80 |
+
def call(self, inputs, training, mask=None):
|
81 |
+
inputs = self.layernorm_1(inputs)
|
82 |
+
inputs = self.dense_1(inputs)
|
83 |
+
|
84 |
+
attention_output_1 = self.attention_1(
|
85 |
+
query=inputs,
|
86 |
+
value=inputs,
|
87 |
+
key=inputs,
|
88 |
+
attention_mask=None,
|
89 |
+
training=training,
|
90 |
+
)
|
91 |
+
out_1 = self.layernorm_2(inputs + attention_output_1)
|
92 |
+
return out_1
|
93 |
+
|
94 |
+
|
95 |
+
class PositionalEmbedding(layers.Layer):
|
96 |
+
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
|
97 |
+
super().__init__(**kwargs)
|
98 |
+
self.token_embeddings = layers.Embedding(
|
99 |
+
input_dim=vocab_size, output_dim=embed_dim
|
100 |
+
)
|
101 |
+
self.position_embeddings = layers.Embedding(
|
102 |
+
input_dim=sequence_length, output_dim=embed_dim
|
103 |
+
)
|
104 |
+
self.sequence_length = sequence_length
|
105 |
+
self.vocab_size = vocab_size
|
106 |
+
self.embed_dim = embed_dim
|
107 |
+
self.embed_scale = tf.math.sqrt(tf.cast(embed_dim, tf.float32))
|
108 |
+
|
109 |
+
def call(self, inputs):
|
110 |
+
length = tf.shape(inputs)[-1]
|
111 |
+
positions = tf.range(start=0, limit=length, delta=1)
|
112 |
+
embedded_tokens = self.token_embeddings(inputs)
|
113 |
+
embedded_tokens = embedded_tokens * self.embed_scale
|
114 |
+
embedded_positions = self.position_embeddings(positions)
|
115 |
+
return embedded_tokens + embedded_positions
|
116 |
+
|
117 |
+
def compute_mask(self, inputs, mask=None):
|
118 |
+
return tf.math.not_equal(inputs, 0)
|
119 |
+
|
120 |
+
|
121 |
+
class TransformerDecoderBlock(layers.Layer):
|
122 |
+
def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
|
123 |
+
super().__init__(**kwargs)
|
124 |
+
self.embed_dim = embed_dim
|
125 |
+
self.ff_dim = ff_dim
|
126 |
+
self.num_heads = num_heads
|
127 |
+
self.attention_1 = layers.MultiHeadAttention(
|
128 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
129 |
+
)
|
130 |
+
self.attention_2 = layers.MultiHeadAttention(
|
131 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
132 |
+
)
|
133 |
+
self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
|
134 |
+
self.ffn_layer_2 = layers.Dense(embed_dim)
|
135 |
+
|
136 |
+
self.layernorm_1 = layers.LayerNormalization()
|
137 |
+
self.layernorm_2 = layers.LayerNormalization()
|
138 |
+
self.layernorm_3 = layers.LayerNormalization()
|
139 |
+
|
140 |
+
self.embedding = PositionalEmbedding(
|
141 |
+
embed_dim=EMBED_DIM, sequence_length=SEQ_LENGTH, vocab_size=VOCAB_SIZE
|
142 |
+
)
|
143 |
+
self.out = layers.Dense(VOCAB_SIZE, activation="softmax")
|
144 |
+
|
145 |
+
self.dropout_1 = layers.Dropout(0.3)
|
146 |
+
self.dropout_2 = layers.Dropout(0.5)
|
147 |
+
self.supports_masking = True
|
148 |
+
|
149 |
+
def call(self, inputs, encoder_outputs, training, mask=None):
|
150 |
+
inputs = self.embedding(inputs)
|
151 |
+
causal_mask = self.get_causal_attention_mask(inputs)
|
152 |
+
|
153 |
+
if mask is not None:
|
154 |
+
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
|
155 |
+
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
|
156 |
+
combined_mask = tf.minimum(combined_mask, causal_mask)
|
157 |
+
|
158 |
+
attention_output_1 = self.attention_1(
|
159 |
+
query=inputs,
|
160 |
+
value=inputs,
|
161 |
+
key=inputs,
|
162 |
+
attention_mask=combined_mask,
|
163 |
+
training=training,
|
164 |
+
)
|
165 |
+
out_1 = self.layernorm_1(inputs + attention_output_1)
|
166 |
+
|
167 |
+
attention_output_2 = self.attention_2(
|
168 |
+
query=out_1,
|
169 |
+
value=encoder_outputs,
|
170 |
+
key=encoder_outputs,
|
171 |
+
attention_mask=padding_mask,
|
172 |
+
training=training,
|
173 |
+
)
|
174 |
+
out_2 = self.layernorm_2(out_1 + attention_output_2)
|
175 |
+
|
176 |
+
ffn_out = self.ffn_layer_1(out_2)
|
177 |
+
ffn_out = self.dropout_1(ffn_out, training=training)
|
178 |
+
ffn_out = self.ffn_layer_2(ffn_out)
|
179 |
+
|
180 |
+
ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
|
181 |
+
ffn_out = self.dropout_2(ffn_out, training=training)
|
182 |
+
preds = self.out(ffn_out)
|
183 |
+
return preds
|
184 |
+
|
185 |
+
def get_causal_attention_mask(self, inputs):
|
186 |
+
input_shape = tf.shape(inputs)
|
187 |
+
batch_size, sequence_length = input_shape[0], input_shape[1]
|
188 |
+
i = tf.range(sequence_length)[:, tf.newaxis]
|
189 |
+
j = tf.range(sequence_length)
|
190 |
+
mask = tf.cast(i >= j, dtype="int32")
|
191 |
+
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
|
192 |
+
mult = tf.concat(
|
193 |
+
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
|
194 |
+
axis=0,
|
195 |
+
)
|
196 |
+
return tf.tile(mask, mult)
|
197 |
+
|
198 |
+
|
199 |
+
class ImageCaptioningModel(keras.Model):
|
200 |
+
def __init__(
|
201 |
+
self, cnn_model, encoder, decoder, num_captions_per_image=5, image_aug=None,
|
202 |
+
):
|
203 |
+
super().__init__()
|
204 |
+
self.cnn_model = cnn_model
|
205 |
+
self.encoder = encoder
|
206 |
+
self.decoder = decoder
|
207 |
+
self.loss_tracker = keras.metrics.Mean(name="loss")
|
208 |
+
self.acc_tracker = keras.metrics.Mean(name="accuracy")
|
209 |
+
self.num_captions_per_image = num_captions_per_image
|
210 |
+
self.image_aug = image_aug
|
211 |
+
|
212 |
+
def calculate_loss(self, y_true, y_pred, mask):
|
213 |
+
loss = self.loss(y_true, y_pred)
|
214 |
+
mask = tf.cast(mask, dtype=loss.dtype)
|
215 |
+
loss *= mask
|
216 |
+
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
|
217 |
+
|
218 |
+
def calculate_accuracy(self, y_true, y_pred, mask):
|
219 |
+
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
|
220 |
+
accuracy = tf.math.logical_and(mask, accuracy)
|
221 |
+
accuracy = tf.cast(accuracy, dtype=tf.float32)
|
222 |
+
mask = tf.cast(mask, dtype=tf.float32)
|
223 |
+
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
|
224 |
+
|
225 |
+
def _compute_caption_loss_and_acc(self, img_embed, batch_seq, training=True):
|
226 |
+
encoder_out = self.encoder(img_embed, training=training)
|
227 |
+
batch_seq_inp = batch_seq[:, :-1]
|
228 |
+
batch_seq_true = batch_seq[:, 1:]
|
229 |
+
mask = tf.math.not_equal(batch_seq_true, 0)
|
230 |
+
batch_seq_pred = self.decoder(
|
231 |
+
batch_seq_inp, encoder_out, training=training, mask=mask
|
232 |
+
)
|
233 |
+
loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
|
234 |
+
acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
|
235 |
+
return loss, acc
|
236 |
+
|
237 |
+
def train_step(self, batch_data):
|
238 |
+
batch_img, batch_seq = batch_data
|
239 |
+
batch_loss = 0
|
240 |
+
batch_acc = 0
|
241 |
+
|
242 |
+
if self.image_aug:
|
243 |
+
batch_img = self.image_aug(batch_img)
|
244 |
+
|
245 |
+
# 1. Get image embeddings
|
246 |
+
img_embed = self.cnn_model(batch_img)
|
247 |
+
|
248 |
+
# 2. Pass each of the five captions one by one to the decoder
|
249 |
+
# along with the encoder outputs and compute the loss as well as accuracy
|
250 |
+
# for each caption.
|
251 |
+
for i in range(self.num_captions_per_image):
|
252 |
+
with tf.GradientTape() as tape:
|
253 |
+
loss, acc = self._compute_caption_loss_and_acc(
|
254 |
+
img_embed, batch_seq[:, i, :], training=True
|
255 |
+
)
|
256 |
+
|
257 |
+
# 3. Update loss and accuracy
|
258 |
+
batch_loss += loss
|
259 |
+
batch_acc += acc
|
260 |
+
|
261 |
+
# 4. Get the list of all the trainable weights
|
262 |
+
train_vars = (
|
263 |
+
self.encoder.trainable_variables + self.decoder.trainable_variables
|
264 |
+
)
|
265 |
+
|
266 |
+
# 5. Get the gradients
|
267 |
+
grads = tape.gradient(loss, train_vars)
|
268 |
+
|
269 |
+
# 6. Update the trainable weights
|
270 |
+
self.optimizer.apply_gradients(zip(grads, train_vars))
|
271 |
+
|
272 |
+
# 7. Update the trackers
|
273 |
+
batch_acc /= float(self.num_captions_per_image)
|
274 |
+
self.loss_tracker.update_state(batch_loss)
|
275 |
+
self.acc_tracker.update_state(batch_acc)
|
276 |
+
|
277 |
+
# 8. Return the loss and accuracy values
|
278 |
+
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
|
279 |
+
|
280 |
+
def test_step(self, batch_data):
|
281 |
+
batch_img, batch_seq = batch_data
|
282 |
+
batch_loss = 0
|
283 |
+
batch_acc = 0
|
284 |
+
|
285 |
+
# 1. Get image embeddings
|
286 |
+
img_embed = self.cnn_model(batch_img)
|
287 |
+
|
288 |
+
# 2. Pass each of the five captions one by one to the decoder
|
289 |
+
# along with the encoder outputs and compute the loss as well as accuracy
|
290 |
+
# for each caption.
|
291 |
+
for i in range(self.num_captions_per_image):
|
292 |
+
loss, acc = self._compute_caption_loss_and_acc(
|
293 |
+
img_embed, batch_seq[:, i, :], training=False
|
294 |
+
)
|
295 |
+
|
296 |
+
# 3. Update batch loss and batch accuracy
|
297 |
+
batch_loss += loss
|
298 |
+
batch_acc += acc
|
299 |
+
|
300 |
+
batch_acc /= float(self.num_captions_per_image)
|
301 |
+
|
302 |
+
# 4. Update the trackers
|
303 |
+
self.loss_tracker.update_state(batch_loss)
|
304 |
+
self.acc_tracker.update_state(batch_acc)
|
305 |
+
|
306 |
+
# 5. Return the loss and accuracy values
|
307 |
+
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
|
308 |
+
|
309 |
+
@property
|
310 |
+
def metrics(self):
|
311 |
+
# We need to list our metrics here so the `reset_states()` can be
|
312 |
+
# called automatically.
|
313 |
+
return [self.loss_tracker, self.acc_tracker]
|
314 |
+
|
315 |
+
# wrapping models
|
316 |
+
cnn_model = get_cnn_model()
|
317 |
+
encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)
|
318 |
+
decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)
|
319 |
+
caption_model = ImageCaptioningModel(
|
320 |
+
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
|
321 |
+
)
|
322 |
+
|
323 |
+
|
324 |
+
loaded_model = ImageCaptioningModel(
|
325 |
+
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
|
326 |
+
)
|
327 |
+
# load weights
|
328 |
+
loaded_model.built = True
|
329 |
+
loaded_model.load_weights('/content/drive/My Drive/AI_Hack/cap_model')
|
330 |
+
|
331 |
+
vocab = vectorization.get_vocabulary()
|
332 |
+
index_lookup = dict(zip(range(len(vocab)), vocab))
|
333 |
+
max_decoded_sentence_length = SEQ_LENGTH - 1
|
334 |
+
valid_images = list(valid_data.keys())
|
335 |
+
|
336 |
+
def generate_caption(image):
|
337 |
+
|
338 |
+
sample_img = image
|
339 |
+
|
340 |
+
# Read the image from the disk
|
341 |
+
sample_img = decode_and_resize(sample_img)
|
342 |
+
img = sample_img.numpy().clip(0, 255).astype(np.uint8)
|
343 |
+
plt.imshow(img)
|
344 |
+
plt.show()
|
345 |
+
|
346 |
+
# Pass the image to the CNN
|
347 |
+
img = tf.expand_dims(sample_img, 0)
|
348 |
+
img = loaded_model.cnn_model(img)
|
349 |
+
|
350 |
+
# Pass the image features to the Transformer encoder
|
351 |
+
encoded_img = loaded_model.encoder(img, training=False)
|
352 |
+
|
353 |
+
# Generate the caption using the Transformer decoder
|
354 |
+
decoded_caption = "<start> "
|
355 |
+
for i in range(max_decoded_sentence_length):
|
356 |
+
tokenized_caption = vectorization([decoded_caption])[:, :-1]
|
357 |
+
mask = tf.math.not_equal(tokenized_caption, 0)
|
358 |
+
predictions = loaded_model.decoder(
|
359 |
+
tokenized_caption, encoded_img, training=False, mask=mask
|
360 |
+
)
|
361 |
+
sampled_token_index = np.argmax(predictions[0, i, :])
|
362 |
+
sampled_token = index_lookup[sampled_token_index]
|
363 |
+
if sampled_token == " <end>":
|
364 |
+
break
|
365 |
+
decoded_caption += " " + sampled_token
|
366 |
+
|
367 |
+
decoded_caption = decoded_caption.replace("<start> ", "")
|
368 |
+
decoded_caption = decoded_caption.replace(" <end>", "").strip()
|
369 |
+
print("Predicted Caption: ", decoded_caption)
|
370 |
+
|
371 |
+
inputs = [
|
372 |
+
gr.inputs.Image( label="Original Image")
|
373 |
+
]
|
374 |
+
|
375 |
+
outputs = [
|
376 |
+
gr.outputs.Textbox(label = 'Caption')
|
377 |
+
]
|
378 |
+
|
379 |
+
title = "Image Captioning using CNN and a transformer + "
|
380 |
+
description = "Implementing an image cpationing model using a pretrained CNN model of Efficient Net and transformer to generate Image Caption for the uploaded image. Flickr8K Dataset was used for training."
|
381 |
+
article = " "
|
382 |
+
examples = [["pic 1.jpg"], ["pic 2.jpg"], ["pic 3.jpg"], ["pic 4.jpg"]]
|
383 |
+
|
384 |
+
gr.Interface(
|
385 |
+
generate_caption,
|
386 |
+
inputs,
|
387 |
+
outputs,
|
388 |
+
title=title,
|
389 |
+
description=description,
|
390 |
+
article=article,
|
391 |
+
examples=examples,
|
392 |
+
).launch(debug=True, enable_queue=True)
|