Spaces:
Sleeping
Sleeping
update remote
Browse files- pages/2_Text_prompt.py +4 -390
- pdfutils.py +152 -4
- users.db +0 -0
pages/2_Text_prompt.py
CHANGED
@@ -14,12 +14,12 @@ import re
|
|
14 |
from reportlab.platypus import Paragraph, Frame, Spacer
|
15 |
from reportlab.lib.styles import getSampleStyleSheet
|
16 |
import shutil
|
|
|
17 |
|
18 |
MODEL_ID = "gemini-2.0-flash-exp"
|
19 |
api_key = os.getenv("GEMINI_API_KEY")
|
20 |
model_id = MODEL_ID
|
21 |
genai.configure(api_key=api_key)
|
22 |
-
enable_stream = False
|
23 |
|
24 |
if "model" not in st.session_state:
|
25 |
st.session_state.model = genai.GenerativeModel(MODEL_ID)
|
@@ -48,392 +48,6 @@ def save_user_prompt(username, prompt_time, prompt_type):
|
|
48 |
conn.commit()
|
49 |
conn.close()
|
50 |
|
51 |
-
def merge_json_strings(json_str1, json_str2):
|
52 |
-
"""
|
53 |
-
Merges two JSON strings into one, handling potential markdown tags.
|
54 |
-
|
55 |
-
Args:
|
56 |
-
json_str1: The first JSON string, potentially with markdown tags.
|
57 |
-
json_str2: The second JSON string, potentially with markdown tags.
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
A cleaned JSON string representing the merged JSON objects.
|
61 |
-
"""
|
62 |
-
|
63 |
-
# Clean the JSON strings by removing markdown tags
|
64 |
-
cleaned_json_str1 = _clean_markdown(json_str1)
|
65 |
-
cleaned_json_str2 = _clean_markdown(json_str2)
|
66 |
-
|
67 |
-
try:
|
68 |
-
# Parse the cleaned JSON strings into Python dictionaries
|
69 |
-
data1 = json.loads(cleaned_json_str1)
|
70 |
-
data2 = json.loads(cleaned_json_str2)
|
71 |
-
|
72 |
-
# Merge the dictionaries
|
73 |
-
merged_data = _merge_dicts(data1, data2)
|
74 |
-
|
75 |
-
# Convert the merged dictionary back into a JSON string
|
76 |
-
return json.dumps(merged_data, indent=2)
|
77 |
-
except json.JSONDecodeError as e:
|
78 |
-
return f"Error decoding JSON: {e}"
|
79 |
-
|
80 |
-
|
81 |
-
def _clean_markdown(text):
|
82 |
-
"""
|
83 |
-
Removes markdown tags from a string if they exist.
|
84 |
-
Otherwise, returns the original string unchanged.
|
85 |
-
|
86 |
-
Args:
|
87 |
-
text: The input string.
|
88 |
-
|
89 |
-
Returns:
|
90 |
-
The string with markdown tags removed, or the original string
|
91 |
-
if no markdown tags were found.
|
92 |
-
"""
|
93 |
-
try:
|
94 |
-
# Check if the string contains markdown
|
95 |
-
if re.match(r"^```json\s*", text) and re.search(r"\s*```$", text):
|
96 |
-
# Remove leading ```json
|
97 |
-
text = re.sub(r"^```json\s*", "", text)
|
98 |
-
# Remove trailing ```
|
99 |
-
text = re.sub(r"\s*```$", "", text)
|
100 |
-
return text
|
101 |
-
except Exception as e:
|
102 |
-
# Log the error
|
103 |
-
st.error(f"Error cleaning markdown: {e}")
|
104 |
-
return None
|
105 |
-
|
106 |
-
def _merge_dicts(data1, data2):
|
107 |
-
"""
|
108 |
-
Recursively merges two data structures.
|
109 |
-
|
110 |
-
Handles merging of dictionaries and lists.
|
111 |
-
For dictionaries, if a key exists in both and both values are dictionaries
|
112 |
-
or lists, they are merged recursively. Otherwise, the value from data2 is used.
|
113 |
-
For lists, the lists are concatenated.
|
114 |
-
|
115 |
-
Args:
|
116 |
-
data1: The first data structure (dictionary or list).
|
117 |
-
data2: The second data structure (dictionary or list).
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
The merged data structure.
|
121 |
-
|
122 |
-
Raises:
|
123 |
-
ValueError: If the data types are not supported for merging.
|
124 |
-
"""
|
125 |
-
if isinstance(data1, dict) and isinstance(data2, dict):
|
126 |
-
for key, value in data2.items():
|
127 |
-
if key in data1 and isinstance(data1[key], (dict, list)) and isinstance(value, type(data1[key])):
|
128 |
-
_merge_dicts(data1[key], value)
|
129 |
-
else:
|
130 |
-
data1[key] = value
|
131 |
-
return data1
|
132 |
-
elif isinstance(data1, list) and isinstance(data2, list):
|
133 |
-
return data1 + data2
|
134 |
-
else:
|
135 |
-
raise ValueError("Unsupported data types for merging")
|
136 |
-
|
137 |
-
def create_json(metadata, content):
|
138 |
-
"""
|
139 |
-
Creates a JSON string combining metadata and content.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
metadata: A dictionary containing metadata information.
|
143 |
-
content: A dictionary containing the quiz content.
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
A string representing the combined JSON data.
|
147 |
-
"""
|
148 |
-
|
149 |
-
# Create metadata with timestamp
|
150 |
-
metadata = {
|
151 |
-
"subject": metadata.get("subject", ""),
|
152 |
-
"topic": metadata.get("topic", ""),
|
153 |
-
"num_questions": metadata.get("num_questions", 0),
|
154 |
-
"exam_type": metadata.get("exam_type", ""),
|
155 |
-
"timestamp": datetime.datetime.now().isoformat()
|
156 |
-
}
|
157 |
-
|
158 |
-
# Combine metadata and content
|
159 |
-
combined_data = {"metadata": metadata, "content": content}
|
160 |
-
|
161 |
-
# Convert to JSON string
|
162 |
-
json_string = json.dumps(combined_data, indent=4)
|
163 |
-
|
164 |
-
return json_string
|
165 |
-
|
166 |
-
def create_pdf(data):
|
167 |
-
"""
|
168 |
-
Creates a PDF file with text wrapping for quiz content, supporting multiple question types.
|
169 |
-
"""
|
170 |
-
try:
|
171 |
-
# Load the JSON data
|
172 |
-
data = json.loads(data)
|
173 |
-
|
174 |
-
if 'metadata' not in data or 'content' not in data:
|
175 |
-
st.error("Error: Invalid data format. Missing 'metadata' or 'content' keys.")
|
176 |
-
return None
|
177 |
-
|
178 |
-
metadata = data['metadata']
|
179 |
-
content = data['content']
|
180 |
-
|
181 |
-
# Validate metadata
|
182 |
-
required_metadata_keys = ['subject', 'topic', 'exam_type', 'num_questions']
|
183 |
-
if not all(key in metadata for key in required_metadata_keys):
|
184 |
-
st.error("Error: Invalid metadata format. Missing required keys.")
|
185 |
-
return None
|
186 |
-
|
187 |
-
# Create a unique filename with timestamp
|
188 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
189 |
-
pdf_filename = f"quiz_output_{timestamp}.pdf"
|
190 |
-
temp_dir = tempfile.gettempdir()
|
191 |
-
pdf_path = os.path.join(temp_dir, pdf_filename)
|
192 |
-
|
193 |
-
c = canvas.Canvas(pdf_path, pagesize=A4)
|
194 |
-
c.setFont("Helvetica", 10)
|
195 |
-
|
196 |
-
styles = getSampleStyleSheet()
|
197 |
-
text_style = styles['Normal']
|
198 |
-
|
199 |
-
# Starting position
|
200 |
-
margin_left = 50
|
201 |
-
y_position = 750
|
202 |
-
line_height = 12 # Adjusted for tighter spacing
|
203 |
-
frame_width = 500
|
204 |
-
first_page = True
|
205 |
-
|
206 |
-
def wrap_text_draw(text, x, y):
|
207 |
-
"""
|
208 |
-
Wraps and draws text using ReportLab's Paragraph for automatic line breaks.
|
209 |
-
"""
|
210 |
-
p = Paragraph(text, text_style)
|
211 |
-
width, height = p.wrap(frame_width, y)
|
212 |
-
p.drawOn(c, x, y - height)
|
213 |
-
return height
|
214 |
-
|
215 |
-
# Print metadata once on the first page
|
216 |
-
if first_page:
|
217 |
-
for key, label in [("subject", "Subject"), ("topic", "Topic"),
|
218 |
-
("exam_type", "Type"), ("num_questions", "Number of Questions")]:
|
219 |
-
c.drawString(margin_left, y_position, f"{label}: {metadata[key]}")
|
220 |
-
y_position -= line_height
|
221 |
-
y_position -= line_height
|
222 |
-
first_page = False
|
223 |
-
|
224 |
-
# Render questions and options
|
225 |
-
for idx, q in enumerate(content):
|
226 |
-
if not isinstance(q, dict):
|
227 |
-
st.error(f"Error: Invalid question format at index {idx}. Skipping...")
|
228 |
-
continue
|
229 |
-
|
230 |
-
question_text = f"{idx + 1}. {q.get('question', q.get('statement', ''))}"
|
231 |
-
height = wrap_text_draw(question_text, margin_left, y_position)
|
232 |
-
y_position -= (height + line_height)
|
233 |
-
|
234 |
-
if y_position < 50:
|
235 |
-
c.showPage()
|
236 |
-
c.setFont("Helvetica", 10)
|
237 |
-
y_position = 750
|
238 |
-
|
239 |
-
# Handle specific exam types
|
240 |
-
exam_type = metadata['exam_type']
|
241 |
-
|
242 |
-
if exam_type == "Multiple Choice":
|
243 |
-
for option_idx, option in enumerate(q['options'], ord('a')):
|
244 |
-
option_text = f"{chr(option_idx)}) {option}"
|
245 |
-
height = wrap_text_draw(option_text, margin_left + 20, y_position)
|
246 |
-
y_position -= (height + line_height)
|
247 |
-
|
248 |
-
if y_position < 50:
|
249 |
-
c.showPage()
|
250 |
-
c.setFont("Helvetica", 10)
|
251 |
-
y_position = 750
|
252 |
-
|
253 |
-
# Print correct answer
|
254 |
-
correct_answer_text = f"Correct Answer: {q['correct_answer']}"
|
255 |
-
height = wrap_text_draw(correct_answer_text, margin_left + 20, y_position)
|
256 |
-
y_position -= (height + line_height)
|
257 |
-
|
258 |
-
elif exam_type == "True or False":
|
259 |
-
for option in q['options']:
|
260 |
-
height = wrap_text_draw(option, margin_left + 20, y_position)
|
261 |
-
y_position -= (height + line_height)
|
262 |
-
|
263 |
-
if y_position < 50:
|
264 |
-
c.showPage()
|
265 |
-
c.setFont("Helvetica", 10)
|
266 |
-
y_position = 750
|
267 |
-
|
268 |
-
correct_answer_text = f"Correct Answer: {q['correct_answer']}"
|
269 |
-
height = wrap_text_draw(correct_answer_text, margin_left + 20, y_position)
|
270 |
-
y_position -= (height + line_height)
|
271 |
-
|
272 |
-
elif exam_type in ["Short Response", "Essay Type"]:
|
273 |
-
answer_text = f"Correct Answer: {q['correct_answer']}"
|
274 |
-
height = wrap_text_draw(answer_text, margin_left + 20, y_position)
|
275 |
-
y_position -= (height + line_height)
|
276 |
-
|
277 |
-
if y_position < 50:
|
278 |
-
c.showPage()
|
279 |
-
c.setFont("Helvetica", 10)
|
280 |
-
y_position = 750
|
281 |
-
|
282 |
-
# Add a footer
|
283 |
-
notice = "This exam was generated by the WVSU Exam Maker (c) 2025 West Visayas State University"
|
284 |
-
c.drawString(margin_left, y_position, notice)
|
285 |
-
|
286 |
-
c.save()
|
287 |
-
return pdf_path
|
288 |
-
|
289 |
-
except Exception as e:
|
290 |
-
st.error(f"Error creating PDF: {e}")
|
291 |
-
return None
|
292 |
-
|
293 |
-
|
294 |
-
def generate_quiz_content(data):
|
295 |
-
"""
|
296 |
-
Separates the metadata and content from a JSON string containing exam data.
|
297 |
-
Creates a markdown formatted text that contains the exam metadata and
|
298 |
-
enumerates the questions, options and answers nicely formatted for readability.
|
299 |
-
|
300 |
-
Args:
|
301 |
-
data: A JSON string containing the exam data.
|
302 |
-
|
303 |
-
Returns:
|
304 |
-
A markdown formatted string.
|
305 |
-
"""
|
306 |
-
data = json.loads(data)
|
307 |
-
metadata = data["metadata"]
|
308 |
-
content = data["content"]
|
309 |
-
exam_type = metadata["exam_type"]
|
310 |
-
if exam_type == "Multiple Choice":
|
311 |
-
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
312 |
-
|
313 |
-
**Exam Type:** {metadata['exam_type']}
|
314 |
-
**Number of Questions:** {metadata['num_questions']}
|
315 |
-
**Timestamp:** {metadata['timestamp']}
|
316 |
-
|
317 |
-
---
|
318 |
-
|
319 |
-
"""
|
320 |
-
for i, q in enumerate(content):
|
321 |
-
md_text += f"""Question {i+1}:
|
322 |
-
{q['question']}
|
323 |
-
|
324 |
-
"""
|
325 |
-
for j, option in enumerate(q['options'], ord('a')):
|
326 |
-
md_text += f"""{chr(j)}. {option}
|
327 |
-
|
328 |
-
"""
|
329 |
-
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
330 |
-
|
331 |
-
---
|
332 |
-
|
333 |
-
"""
|
334 |
-
md_text += """This exam was generated by the WVSU Exam Maker
|
335 |
-
(c) 2025 West Visayas State University
|
336 |
-
"""
|
337 |
-
|
338 |
-
elif exam_type == "True or False":
|
339 |
-
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
340 |
-
|
341 |
-
**Exam Type:** {metadata['exam_type']}
|
342 |
-
**Number of Questions:** {metadata['num_questions']}
|
343 |
-
**Timestamp:** {metadata['timestamp']}
|
344 |
-
|
345 |
-
---
|
346 |
-
|
347 |
-
"""
|
348 |
-
|
349 |
-
for i, q in enumerate(content):
|
350 |
-
md_text += f"""Statement {i+1}:
|
351 |
-
|
352 |
-
{q['statement']}
|
353 |
-
|
354 |
-
"""
|
355 |
-
for j, option in enumerate(q['options'], ord('a')):
|
356 |
-
md_text += f"""{option}
|
357 |
-
"""
|
358 |
-
|
359 |
-
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
360 |
-
|
361 |
-
---
|
362 |
-
"""
|
363 |
-
md_text += """This exam was generated by the WVSU Exam Maker
|
364 |
-
(c) 2025 West Visayas State University"""
|
365 |
-
|
366 |
-
elif exam_type == "Short Response" or exam_type == "Essay Type":
|
367 |
-
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
368 |
-
|
369 |
-
**Exam Type:** {metadata['exam_type']}
|
370 |
-
**Number of Questions:** {metadata['num_questions']}
|
371 |
-
**Timestamp:** {metadata['timestamp']}
|
372 |
-
|
373 |
-
---
|
374 |
-
|
375 |
-
"""
|
376 |
-
|
377 |
-
for i, q in enumerate(content):
|
378 |
-
md_text += f"""Question {i+1}:
|
379 |
-
|
380 |
-
{q['question']}
|
381 |
-
|
382 |
-
"""
|
383 |
-
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
384 |
-
|
385 |
-
---
|
386 |
-
"""
|
387 |
-
md_text += """This exam was generated by the WVSU Exam Maker
|
388 |
-
(c) 2025 West Visayas State University"""
|
389 |
-
|
390 |
-
return md_text
|
391 |
-
|
392 |
-
def generate_metadata(subject, topic, num_questions, exam_type):
|
393 |
-
"""Generates quiz metadata as a dictionary combining num_questions,
|
394 |
-
exam_type, and timestamp.
|
395 |
-
|
396 |
-
Args:
|
397 |
-
num_questions: The number of questions in the exam (int).
|
398 |
-
exam_type: The type of exam (str).
|
399 |
-
|
400 |
-
Returns:
|
401 |
-
A dictionary containing the quiz metadata.
|
402 |
-
"""
|
403 |
-
|
404 |
-
# Format the timestamp
|
405 |
-
timestamp = datetime.datetime.now()
|
406 |
-
formatted_timestamp = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
407 |
-
|
408 |
-
metadata = {
|
409 |
-
"subject": subject,
|
410 |
-
"topic": topic,
|
411 |
-
"num_questions": num_questions,
|
412 |
-
"exam_type": exam_type,
|
413 |
-
"timestamp": formatted_timestamp
|
414 |
-
}
|
415 |
-
|
416 |
-
return metadata
|
417 |
-
|
418 |
-
def generate_text(prompt):
|
419 |
-
"""Generates text based on the prompt."""
|
420 |
-
try:
|
421 |
-
|
422 |
-
# Send a text prompt to Gemini API
|
423 |
-
chat = st.session_state.chat
|
424 |
-
response = chat.send_message(
|
425 |
-
[
|
426 |
-
prompt
|
427 |
-
],
|
428 |
-
stream=enable_stream
|
429 |
-
)
|
430 |
-
|
431 |
-
return response.text
|
432 |
-
|
433 |
-
except Exception as e:
|
434 |
-
st.error(f"An error occurred while generating text: {e}")
|
435 |
-
return None
|
436 |
-
|
437 |
def show_text_prompt():
|
438 |
st.subheader("Text Prompt")
|
439 |
|
@@ -537,14 +151,14 @@ def show_text_prompt():
|
|
537 |
if question_type == "Essay Type":
|
538 |
#prompt once
|
539 |
with st.spinner('Generating questions...'):
|
540 |
-
full_quiz =
|
541 |
|
542 |
else:
|
543 |
if num_questions == 10:
|
544 |
|
545 |
#prompt once
|
546 |
with st.spinner('Generating questions...'):
|
547 |
-
full_quiz =
|
548 |
else:
|
549 |
#prompt multiple times
|
550 |
times = num_questions//10
|
@@ -553,7 +167,7 @@ def show_text_prompt():
|
|
553 |
response = generate_text(prompt)
|
554 |
|
555 |
if i==0:
|
556 |
-
full_quiz =
|
557 |
else:
|
558 |
full_quiz = merge_json_strings(full_quiz, response)
|
559 |
|
|
|
14 |
from reportlab.platypus import Paragraph, Frame, Spacer
|
15 |
from reportlab.lib.styles import getSampleStyleSheet
|
16 |
import shutil
|
17 |
+
from pdfutils import generate_quiz_content, create_pdf, create_json, generate_metadata, merge_json_strings, generate_text, clean_markdown
|
18 |
|
19 |
MODEL_ID = "gemini-2.0-flash-exp"
|
20 |
api_key = os.getenv("GEMINI_API_KEY")
|
21 |
model_id = MODEL_ID
|
22 |
genai.configure(api_key=api_key)
|
|
|
23 |
|
24 |
if "model" not in st.session_state:
|
25 |
st.session_state.model = genai.GenerativeModel(MODEL_ID)
|
|
|
48 |
conn.commit()
|
49 |
conn.close()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def show_text_prompt():
|
52 |
st.subheader("Text Prompt")
|
53 |
|
|
|
151 |
if question_type == "Essay Type":
|
152 |
#prompt once
|
153 |
with st.spinner('Generating questions...'):
|
154 |
+
full_quiz = clean_markdown(generate_text(prompt))
|
155 |
|
156 |
else:
|
157 |
if num_questions == 10:
|
158 |
|
159 |
#prompt once
|
160 |
with st.spinner('Generating questions...'):
|
161 |
+
full_quiz = clean_markdown(generate_text(prompt))
|
162 |
else:
|
163 |
#prompt multiple times
|
164 |
times = num_questions//10
|
|
|
167 |
response = generate_text(prompt)
|
168 |
|
169 |
if i==0:
|
170 |
+
full_quiz = clean_markdown(response)
|
171 |
else:
|
172 |
full_quiz = merge_json_strings(full_quiz, response)
|
173 |
|
pdfutils.py
CHANGED
@@ -3,9 +3,14 @@ import re
|
|
3 |
from reportlab.platypus import Paragraph, Frame, Spacer
|
4 |
from reportlab.lib.styles import getSampleStyleSheet
|
5 |
import datetime
|
6 |
-
from reportlab.platypus import Paragraph, Frame, Spacer
|
7 |
from reportlab.lib.styles import getSampleStyleSheet
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
def merge_json_strings(json_str1, json_str2):
|
11 |
"""
|
@@ -20,8 +25,8 @@ def merge_json_strings(json_str1, json_str2):
|
|
20 |
"""
|
21 |
|
22 |
# Clean the JSON strings by removing markdown tags
|
23 |
-
cleaned_json_str1 =
|
24 |
-
cleaned_json_str2 =
|
25 |
|
26 |
try:
|
27 |
# Parse the cleaned JSON strings into Python dictionaries
|
@@ -36,7 +41,7 @@ def merge_json_strings(json_str1, json_str2):
|
|
36 |
except json.JSONDecodeError as e:
|
37 |
return f"Error decoding JSON: {e}"
|
38 |
|
39 |
-
def
|
40 |
"""
|
41 |
Removes markdown tags from a string if they exist.
|
42 |
Otherwise, returns the original string unchanged.
|
@@ -247,3 +252,146 @@ def create_pdf(data):
|
|
247 |
except Exception as e:
|
248 |
st.error(f"Error creating PDF: {e}")
|
249 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from reportlab.platypus import Paragraph, Frame, Spacer
|
4 |
from reportlab.lib.styles import getSampleStyleSheet
|
5 |
import datetime
|
|
|
6 |
from reportlab.lib.styles import getSampleStyleSheet
|
7 |
+
import streamlit as st
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
from reportlab.pdfgen import canvas
|
11 |
+
from reportlab.lib.pagesizes import A4, letter
|
12 |
|
13 |
+
ENABLE_STREAM = False
|
14 |
|
15 |
def merge_json_strings(json_str1, json_str2):
|
16 |
"""
|
|
|
25 |
"""
|
26 |
|
27 |
# Clean the JSON strings by removing markdown tags
|
28 |
+
cleaned_json_str1 = clean_markdown(json_str1)
|
29 |
+
cleaned_json_str2 = clean_markdown(json_str2)
|
30 |
|
31 |
try:
|
32 |
# Parse the cleaned JSON strings into Python dictionaries
|
|
|
41 |
except json.JSONDecodeError as e:
|
42 |
return f"Error decoding JSON: {e}"
|
43 |
|
44 |
+
def clean_markdown(text):
|
45 |
"""
|
46 |
Removes markdown tags from a string if they exist.
|
47 |
Otherwise, returns the original string unchanged.
|
|
|
252 |
except Exception as e:
|
253 |
st.error(f"Error creating PDF: {e}")
|
254 |
return None
|
255 |
+
|
256 |
+
def generate_quiz_content(data):
|
257 |
+
"""
|
258 |
+
Separates the metadata and content from a JSON string containing exam data.
|
259 |
+
Creates a markdown formatted text that contains the exam metadata and
|
260 |
+
enumerates the questions, options and answers nicely formatted for readability.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
data: A JSON string containing the exam data.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
A markdown formatted string.
|
267 |
+
"""
|
268 |
+
data = json.loads(data)
|
269 |
+
metadata = data["metadata"]
|
270 |
+
content = data["content"]
|
271 |
+
exam_type = metadata["exam_type"]
|
272 |
+
if exam_type == "Multiple Choice":
|
273 |
+
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
274 |
+
|
275 |
+
**Exam Type:** {metadata['exam_type']}
|
276 |
+
**Number of Questions:** {metadata['num_questions']}
|
277 |
+
**Timestamp:** {metadata['timestamp']}
|
278 |
+
|
279 |
+
---
|
280 |
+
|
281 |
+
"""
|
282 |
+
for i, q in enumerate(content):
|
283 |
+
md_text += f"""Question {i+1}:
|
284 |
+
{q['question']}
|
285 |
+
|
286 |
+
"""
|
287 |
+
for j, option in enumerate(q['options'], ord('a')):
|
288 |
+
md_text += f"""{chr(j)}. {option}
|
289 |
+
|
290 |
+
"""
|
291 |
+
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
292 |
+
|
293 |
+
---
|
294 |
+
|
295 |
+
"""
|
296 |
+
md_text += """This exam was generated by the WVSU Exam Maker
|
297 |
+
(c) 2025 West Visayas State University
|
298 |
+
"""
|
299 |
+
|
300 |
+
elif exam_type == "True or False":
|
301 |
+
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
302 |
+
|
303 |
+
**Exam Type:** {metadata['exam_type']}
|
304 |
+
**Number of Questions:** {metadata['num_questions']}
|
305 |
+
**Timestamp:** {metadata['timestamp']}
|
306 |
+
|
307 |
+
---
|
308 |
+
|
309 |
+
"""
|
310 |
+
|
311 |
+
for i, q in enumerate(content):
|
312 |
+
md_text += f"""Statement {i+1}:
|
313 |
+
|
314 |
+
{q['statement']}
|
315 |
+
|
316 |
+
"""
|
317 |
+
for j, option in enumerate(q['options'], ord('a')):
|
318 |
+
md_text += f"""{option}
|
319 |
+
"""
|
320 |
+
|
321 |
+
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
322 |
+
|
323 |
+
---
|
324 |
+
"""
|
325 |
+
md_text += """This exam was generated by the WVSU Exam Maker
|
326 |
+
(c) 2025 West Visayas State University"""
|
327 |
+
|
328 |
+
elif exam_type == "Short Response" or exam_type == "Essay Type":
|
329 |
+
md_text = f"""# {metadata['subject']} - {metadata['topic']}
|
330 |
+
|
331 |
+
**Exam Type:** {metadata['exam_type']}
|
332 |
+
**Number of Questions:** {metadata['num_questions']}
|
333 |
+
**Timestamp:** {metadata['timestamp']}
|
334 |
+
|
335 |
+
---
|
336 |
+
|
337 |
+
"""
|
338 |
+
|
339 |
+
for i, q in enumerate(content):
|
340 |
+
md_text += f"""Question {i+1}:
|
341 |
+
|
342 |
+
{q['question']}
|
343 |
+
|
344 |
+
"""
|
345 |
+
md_text += f"""**Correct Answer:** {q['correct_answer']}
|
346 |
+
|
347 |
+
---
|
348 |
+
"""
|
349 |
+
md_text += """This exam was generated by the WVSU Exam Maker
|
350 |
+
(c) 2025 West Visayas State University"""
|
351 |
+
|
352 |
+
return md_text
|
353 |
+
|
354 |
+
def generate_metadata(subject, topic, num_questions, exam_type):
|
355 |
+
"""Generates quiz metadata as a dictionary combining num_questions,
|
356 |
+
exam_type, and timestamp.
|
357 |
+
|
358 |
+
Args:
|
359 |
+
num_questions: The number of questions in the exam (int).
|
360 |
+
exam_type: The type of exam (str).
|
361 |
+
|
362 |
+
Returns:
|
363 |
+
A dictionary containing the quiz metadata.
|
364 |
+
"""
|
365 |
+
|
366 |
+
# Format the timestamp
|
367 |
+
timestamp = datetime.datetime.now()
|
368 |
+
formatted_timestamp = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
369 |
+
|
370 |
+
metadata = {
|
371 |
+
"subject": subject,
|
372 |
+
"topic": topic,
|
373 |
+
"num_questions": num_questions,
|
374 |
+
"exam_type": exam_type,
|
375 |
+
"timestamp": formatted_timestamp
|
376 |
+
}
|
377 |
+
|
378 |
+
return metadata
|
379 |
+
|
380 |
+
def generate_text(prompt):
|
381 |
+
"""Generates text based on the prompt."""
|
382 |
+
try:
|
383 |
+
|
384 |
+
# Send a text prompt to Gemini API
|
385 |
+
chat = st.session_state.chat
|
386 |
+
response = chat.send_message(
|
387 |
+
[
|
388 |
+
prompt
|
389 |
+
],
|
390 |
+
stream=ENABLE_STREAM
|
391 |
+
)
|
392 |
+
|
393 |
+
return response.text
|
394 |
+
|
395 |
+
except Exception as e:
|
396 |
+
st.error(f"An error occurred while generating text: {e}")
|
397 |
+
return None
|
users.db
CHANGED
Binary files a/users.db and b/users.db differ
|
|