Spaces:
Runtime error
Runtime error
add chatgpt support
Browse files- README.md +14 -2
- app.py +26 -88
- docs/text_postprocess.png +0 -0
- requirements.txt +5 -3
- src/utils.py +152 -3
- src/vad.py +3 -3
README.md
CHANGED
@@ -16,7 +16,18 @@ Fork from : https://huggingface.co/spaces/aadnk/faster-whisper-webui/tree/main
|
|
16 |
|
17 |
我的更改:
|
18 |
|
19 |
-
* 新添加了一个文本后处理的tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Running Locally
|
22 |
|
@@ -194,4 +205,5 @@ registry.gitlab.com/aadnk/whisper-webui:latest
|
|
194 |
|
195 |
- [ ] 如果是一个视频列表,只下载第一个视频
|
196 |
- [ ] ~~如果已经转录完了再选翻译任务,则不重新转录~~
|
197 |
-
- [ ]
|
|
|
|
16 |
|
17 |
我的更改:
|
18 |
|
19 |
+
* 新添加了一个文本后处理的tab:
|
20 |
+

|
21 |
+
* 支持使用ChatGPT或Paddle auto punc(二选一)对文本自动添加合适的标点符号
|
22 |
+
* 支持使用pycorrector对文本进行纠错
|
23 |
+
* 支持去掉指定的语气助词
|
24 |
+
* 支持对输出文本的指定字符进行替换
|
25 |
+
|
26 |
+
该App同时部署在:
|
27 |
+
|
28 |
+
* HuggingFace Spaces: https://huggingface.co/spaces/wwdok/faster-whisper-webui-cn
|
29 |
+
* OpenXLab: https://openxlab.org.cn/apps/detail/wwdok/faster-whisper-webui
|
30 |
+
* ModelScope: https://modelscope.cn/studios/wwd123/faster-whisper-webui-cn
|
31 |
|
32 |
# Running Locally
|
33 |
|
|
|
205 |
|
206 |
- [ ] 如果是一个视频列表,只下载第一个视频
|
207 |
- [ ] ~~如果已经转录完了再选翻译任务,则不重新转录~~
|
208 |
+
- [ ] ~~目前翻译任务只能由任意语言翻译成英语,不能指定其他语言,要能支持翻译成其他语言,至少支持中文~~\
|
209 |
+
- [ ] 使用ChatGPT自动纠正错别字和添加标点符号
|
app.py
CHANGED
@@ -10,7 +10,6 @@ import pathlib
|
|
10 |
import tempfile
|
11 |
import zipfile
|
12 |
import numpy as np
|
13 |
-
import pyperclip
|
14 |
import torch
|
15 |
|
16 |
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode
|
@@ -32,6 +31,7 @@ import gradio as gr
|
|
32 |
|
33 |
from src.download import ExceededMaximumDuration, download_url
|
34 |
from src.utils import optional_int, slugify, write_srt, write_vtt
|
|
|
35 |
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
|
36 |
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
|
37 |
from src.whisper.whisperFactory import create_whisper_container
|
@@ -614,102 +614,36 @@ def create_ui(app_config: ApplicationConfig):
|
|
614 |
gr.Text(label="Segments")
|
615 |
])
|
616 |
|
617 |
-
def
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
yield segment.replace(separator, "")
|
625 |
-
start = end +1
|
626 |
-
else:
|
627 |
-
end = start + maxlength
|
628 |
-
yield s[start:end]
|
629 |
-
start = end
|
630 |
-
|
631 |
-
yield s[start:]
|
632 |
-
|
633 |
-
def post_processing(text, apply_correction, auto_punc, separator, remove_words):
|
634 |
-
print(f"==>> separator: {separator}")
|
635 |
-
original_separator1 = " "
|
636 |
-
original_separator2 = ","
|
637 |
-
# 对于长文本需要先分段再推理,推理完再合并
|
638 |
-
# auto_punc:自动添加合适的、不同的标点符号
|
639 |
-
if auto_punc == True:
|
640 |
-
# 自动分段文本之前先去除原有的标点符号
|
641 |
-
text = text.replace(original_separator1, "")
|
642 |
-
text = text.replace(original_separator2, "")
|
643 |
-
import paddlehub as hub
|
644 |
-
model = hub.Module(name='auto_punc', version='1.0.0')
|
645 |
-
t3 = time.time()
|
646 |
-
# split long text to short text less than max_length and store them in list
|
647 |
-
max_length = 256
|
648 |
-
chunks = list(get_chunks(text, max_length))
|
649 |
-
results = []
|
650 |
-
results = model.add_puncs(chunks, max_length=max_length)
|
651 |
-
text = ",".join(results) # 分段处硬编码成使用中文逗号分割
|
652 |
-
t4 = time.time()
|
653 |
-
print("Auto punc finished. Cost time: {:.2f}s".format(t4-t3))
|
654 |
-
# print(f"==>> text after auto punc: {text}")
|
655 |
-
else:
|
656 |
-
# 将空格全部统一替换成一种分隔符
|
657 |
-
if separator == "\\n":
|
658 |
-
# 直接使用separator会无法换行
|
659 |
-
text = text.replace(original_separator1, "\n")
|
660 |
-
text = text.replace(original_separator2, "\n")
|
661 |
-
else:
|
662 |
-
text = text.replace(original_separator1, separator)
|
663 |
-
text = text.replace(original_separator2, separator)
|
664 |
-
|
665 |
-
if apply_correction == True:
|
666 |
-
import pycorrector
|
667 |
-
print("Start correcting...")
|
668 |
-
t1 = time.time()
|
669 |
-
text, detail = pycorrector.correct(text)
|
670 |
-
t2 = time.time()
|
671 |
-
print("Correcting finished. Cost time: {:.2f}s".format(t2-t1))
|
672 |
-
print(f"==>> detail: {detail}")
|
673 |
-
|
674 |
-
# 去掉语气词
|
675 |
-
t5 = time.time()
|
676 |
-
remove_words = remove_words.split(",") + remove_words.split(",") + remove_words.split(" ")
|
677 |
-
for word in remove_words:
|
678 |
-
text = text.replace(word, "")
|
679 |
-
t6 = time.time()
|
680 |
-
print("Remove words finished. Cost time: {:.2f}s".format(t6-t5))
|
681 |
-
|
682 |
-
return text
|
683 |
-
|
684 |
-
def replace(text, src_word, target_word):
|
685 |
-
text = text.replace(src_word, target_word)
|
686 |
-
return text
|
687 |
-
|
688 |
-
def switch_punc_method(auto_punc):
|
689 |
-
if auto_punc == True:
|
690 |
-
# gr.update里的参数是给output的
|
691 |
-
return gr.update(visible=False) # 教程:https://www.gradio.app/guides/blocks-and-event-listeners#updating-component-configurations
|
692 |
else:
|
693 |
-
return gr.update(visible=True)
|
694 |
-
|
695 |
-
def copy_text(text):
|
696 |
-
pyperclip.copy(text)
|
697 |
-
|
698 |
test_postprocess = gr.Blocks()
|
699 |
|
700 |
with test_postprocess:
|
701 |
gr.Markdown(
|
702 |
"""
|
703 |
-
后处理Simple或Full标签页输出的Transcription
|
704 |
"""
|
705 |
)
|
706 |
with gr.Row():
|
707 |
with gr.Column():
|
708 |
input_text = gr.TextArea(label="输入文本", placeholder="在此处粘贴你的待处理文本")
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
|
|
|
|
|
|
|
|
|
|
713 |
submit_btn = gr.Button("提交")
|
714 |
with gr.Column():
|
715 |
output_text = gr.TextArea(label="输出文本", interactive=True).style(show_copy_button=True)
|
@@ -718,10 +652,14 @@ def create_ui(app_config: ApplicationConfig):
|
|
718 |
target_word = gr.Text(label="替换后的字符")
|
719 |
replace_btn = gr.Button("替换")
|
720 |
copy_btn = gr.Button("复制到剪贴板")
|
721 |
-
|
722 |
-
|
|
|
|
|
|
|
723 |
replace_btn.click(replace, inputs=[output_text, src_word, target_word], outputs=output_text)
|
724 |
copy_btn.click(copy_text, inputs=output_text)
|
|
|
725 |
demo = gr.TabbedInterface([simple_transcribe, full_transcribe, test_postprocess], tab_names=["Simple", "Full", "Text Postprocess"])
|
726 |
|
727 |
# Queue up the demo
|
|
|
10 |
import tempfile
|
11 |
import zipfile
|
12 |
import numpy as np
|
|
|
13 |
import torch
|
14 |
|
15 |
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode
|
|
|
31 |
|
32 |
from src.download import ExceededMaximumDuration, download_url
|
33 |
from src.utils import optional_int, slugify, write_srt, write_vtt
|
34 |
+
from src.utils import post_processing, replace, copy_text, on_token_change, num_tokens_from_messages, chat_with_gpt
|
35 |
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
|
36 |
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
|
37 |
from src.whisper.whisperFactory import create_whisper_container
|
|
|
614 |
gr.Text(label="Segments")
|
615 |
])
|
616 |
|
617 |
+
def switch_punc_method(use_chatgpt, auto_punc):
|
618 |
+
if use_chatgpt == True and auto_punc == True:
|
619 |
+
return gr.update(), gr.update(), gr.update()
|
620 |
+
elif use_chatgpt == True and auto_punc == False:
|
621 |
+
return gr.update(visible=True), gr.update(visible=True, interactive=True), gr.update(visible=False)
|
622 |
+
elif use_chatgpt == False and auto_punc == True:
|
623 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
else:
|
625 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
626 |
+
|
|
|
|
|
|
|
627 |
test_postprocess = gr.Blocks()
|
628 |
|
629 |
with test_postprocess:
|
630 |
gr.Markdown(
|
631 |
"""
|
632 |
+
后处理Simple或Full标签页输出的Transcription里的文本,也可以单独使用
|
633 |
"""
|
634 |
)
|
635 |
with gr.Row():
|
636 |
with gr.Column():
|
637 |
input_text = gr.TextArea(label="输入文本", placeholder="在此处粘贴你的待处理文本")
|
638 |
+
tokens_count = gr.Markdown(label="Tokens 计数: 0", visible=False)
|
639 |
+
use_chatgpt = gr.Checkbox(label="使用ChatGPT自动纠正错别字和添加标点符号", value=False)
|
640 |
+
user_token = gr.Textbox(value='', placeholder="OpenAI API Key", type="password", visible=False,
|
641 |
+
label="输入你的 OpenAI API Key. 你可以从这里(https://platform.openai.com/account/api-keys)获取.\
|
642 |
+
\n⚠ 注意!使用ChatGPT来处理文本会消耗大量的tokens,免费版用户谨慎使用!")
|
643 |
+
apply_correction = gr.Checkbox(label="使用pycorrector纠正错别字", value=False)
|
644 |
+
auto_punc = gr.Checkbox(label="使用paddle auto punc自动添加标点符号", value=False)
|
645 |
+
separator = gr.Text(label="使用统一的标点符号(比如逗号,或换行\\n)", value=",")
|
646 |
+
remove_words = gr.Text(label="去掉的语气助词", value="呢,啊,哦,嗯,嘛,吧,呀,哈,哇,呐,噢,嘞,嘛")
|
647 |
submit_btn = gr.Button("提交")
|
648 |
with gr.Column():
|
649 |
output_text = gr.TextArea(label="输出文本", interactive=True).style(show_copy_button=True)
|
|
|
652 |
target_word = gr.Text(label="替换后的字符")
|
653 |
replace_btn = gr.Button("替换")
|
654 |
copy_btn = gr.Button("复制到剪贴板")
|
655 |
+
input_text.change(num_tokens_from_messages, inputs=[input_text], outputs=[tokens_count])
|
656 |
+
auto_punc.change(switch_punc_method, inputs=[use_chatgpt, auto_punc], outputs=[tokens_count, user_token, separator])
|
657 |
+
use_chatgpt.change(switch_punc_method, inputs=[use_chatgpt, auto_punc], outputs=[tokens_count, user_token, separator])
|
658 |
+
user_token.change(on_token_change, inputs=[user_token], outputs=[])
|
659 |
+
submit_btn.click(post_processing, inputs=[input_text, use_chatgpt, user_token, apply_correction, auto_punc, separator, remove_words], outputs=output_text)
|
660 |
replace_btn.click(replace, inputs=[output_text, src_word, target_word], outputs=output_text)
|
661 |
copy_btn.click(copy_text, inputs=output_text)
|
662 |
+
|
663 |
demo = gr.TabbedInterface([simple_transcribe, full_transcribe, test_postprocess], tab_names=["Simple", "Full", "Text Postprocess"])
|
664 |
|
665 |
# Queue up the demo
|
docs/text_postprocess.png
ADDED
![]() |
requirements.txt
CHANGED
@@ -10,6 +10,8 @@ more_itertools
|
|
10 |
pycorrector
|
11 |
paddlepaddle == 2.4.0
|
12 |
paddlehub
|
13 |
-
aiobotocore
|
14 |
-
botocore
|
15 |
-
pyperclip
|
|
|
|
|
|
10 |
pycorrector
|
11 |
paddlepaddle == 2.4.0
|
12 |
paddlehub
|
13 |
+
-U aiobotocore
|
14 |
+
-U botocore
|
15 |
+
pyperclip
|
16 |
+
openai
|
17 |
+
tiktoken
|
src/utils.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import textwrap
|
2 |
import unicodedata
|
3 |
import re
|
4 |
-
|
5 |
import zlib
|
6 |
from typing import Iterator, TextIO, Union
|
7 |
import tqdm
|
8 |
-
|
9 |
import urllib3
|
|
|
|
|
10 |
|
11 |
|
12 |
def exact_div(x, y):
|
@@ -242,4 +244,151 @@ def download_file(url: str, destination: str):
|
|
242 |
break
|
243 |
|
244 |
output.write(buffer)
|
245 |
-
loop.update(len(buffer))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import textwrap
|
2 |
import unicodedata
|
3 |
import re
|
4 |
+
import time
|
5 |
import zlib
|
6 |
from typing import Iterator, TextIO, Union
|
7 |
import tqdm
|
8 |
+
import pyperclip
|
9 |
import urllib3
|
10 |
+
import openai
|
11 |
+
import tiktoken
|
12 |
|
13 |
|
14 |
def exact_div(x, y):
|
|
|
244 |
break
|
245 |
|
246 |
output.write(buffer)
|
247 |
+
loop.update(len(buffer))
|
248 |
+
|
249 |
+
# -------------used for text post processing tab----------------
|
250 |
+
system_prompt = "You are a helpful assistant."
|
251 |
+
user_prompt = "请帮我把下面的文本纠正错别字并添加合适的标点符号,返回的消息只要处理后的文本:"
|
252 |
+
|
253 |
+
def get_chunks(s, maxlength, separator=None):
|
254 |
+
start = 0
|
255 |
+
end = 0
|
256 |
+
while start + maxlength < len(s) and end != -1:
|
257 |
+
if separator is not None:
|
258 |
+
end = s.rfind(separator, start, start + maxlength + 1)
|
259 |
+
segment = s[start:end]
|
260 |
+
yield segment.replace(separator, "")
|
261 |
+
start = end +1
|
262 |
+
else:
|
263 |
+
end = start + maxlength
|
264 |
+
yield s[start:end]
|
265 |
+
start = end
|
266 |
+
|
267 |
+
yield s[start:]
|
268 |
+
|
269 |
+
def post_processing(text, use_chatgpt, user_token, apply_correction, auto_punc, separator, remove_words):
|
270 |
+
# print(f"==>> separator: {separator}")
|
271 |
+
original_separator1 = " "
|
272 |
+
original_separator2 = ","
|
273 |
+
|
274 |
+
if use_chatgpt == True:
|
275 |
+
if user_token == "":
|
276 |
+
text = "请先设置你的OpenAI API Key,然后再重试"
|
277 |
+
return text
|
278 |
+
else:
|
279 |
+
text = chat_with_gpt(text, system_prompt, user_prompt)
|
280 |
+
return text
|
281 |
+
# 对于长文本需要先分段再推理,推理完再合并
|
282 |
+
elif auto_punc == True:
|
283 |
+
# 自动分段文本之前先去除原有的标点符号
|
284 |
+
text = text.replace(original_separator1, "")
|
285 |
+
text = text.replace(original_separator2, "")
|
286 |
+
import paddlehub as hub
|
287 |
+
model = hub.Module(name='auto_punc', version='1.0.0')
|
288 |
+
t3 = time.time()
|
289 |
+
# split long text to short text less than max_length and store them in list
|
290 |
+
max_length = 256
|
291 |
+
chunks = list(get_chunks(text, max_length))
|
292 |
+
results = []
|
293 |
+
results = model.add_puncs(chunks, max_length=max_length)
|
294 |
+
text = ",".join(results) # 分段处硬编码成使用中文逗号分割
|
295 |
+
t4 = time.time()
|
296 |
+
print("Auto punc finished. Cost time: {:.2f}s".format(t4-t3))
|
297 |
+
# print(f"==>> text after auto punc: {text}")
|
298 |
+
else:
|
299 |
+
# 将空格全部统一替换成一种分隔符
|
300 |
+
if separator == "\\n":
|
301 |
+
# 直接使用separator会无法换行
|
302 |
+
text = text.replace(original_separator1, "\n")
|
303 |
+
text = text.replace(original_separator2, "\n")
|
304 |
+
else:
|
305 |
+
text = text.replace(original_separator1, separator)
|
306 |
+
text = text.replace(original_separator2, separator)
|
307 |
+
|
308 |
+
if apply_correction == True:
|
309 |
+
import pycorrector
|
310 |
+
print("Start correcting...")
|
311 |
+
t1 = time.time()
|
312 |
+
text, detail = pycorrector.correct(text)
|
313 |
+
t2 = time.time()
|
314 |
+
print("Correcting finished. Cost time: {:.2f}s".format(t2-t1))
|
315 |
+
print(f"==>> detail: {detail}")
|
316 |
+
|
317 |
+
# 去掉语气词
|
318 |
+
t5 = time.time()
|
319 |
+
remove_words = remove_words.split(",") + remove_words.split(",") + remove_words.split(" ")
|
320 |
+
for word in remove_words:
|
321 |
+
text = text.replace(word, "")
|
322 |
+
t6 = time.time()
|
323 |
+
print("Remove words finished. Cost time: {:.2f}s".format(t6-t5))
|
324 |
+
|
325 |
+
return text
|
326 |
+
|
327 |
+
def replace(text, src_word, target_word):
|
328 |
+
text = text.replace(src_word, target_word)
|
329 |
+
return text
|
330 |
+
|
331 |
+
def copy_text(text):
|
332 |
+
pyperclip.copy(text)
|
333 |
+
|
334 |
+
def num_tokens_from_messages(message):
|
335 |
+
"""Return the number of tokens used by a list of messages."""
|
336 |
+
model="gpt-3.5-turbo-0613"
|
337 |
+
try:
|
338 |
+
encoding = tiktoken.encoding_for_model(model)
|
339 |
+
except KeyError:
|
340 |
+
print("Warning: model not found. Using cl100k_base encoding.")
|
341 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
342 |
+
if model in {
|
343 |
+
"gpt-3.5-turbo-0613",
|
344 |
+
"gpt-3.5-turbo-16k-0613",
|
345 |
+
"gpt-4-0314",
|
346 |
+
"gpt-4-32k-0314",
|
347 |
+
"gpt-4-0613",
|
348 |
+
"gpt-4-32k-0613",
|
349 |
+
}:
|
350 |
+
tokens_per_message = 3
|
351 |
+
tokens_per_name = 1
|
352 |
+
elif model == "gpt-3.5-turbo-0301":
|
353 |
+
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
|
354 |
+
tokens_per_name = -1 # if there's a name, the role is omitted
|
355 |
+
elif "gpt-3.5-turbo" in model:
|
356 |
+
print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
|
357 |
+
return num_tokens_from_messages(message, model="gpt-3.5-turbo-0613")
|
358 |
+
elif "gpt-4" in model:
|
359 |
+
print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
|
360 |
+
return num_tokens_from_messages(message, model="gpt-4-0613")
|
361 |
+
else:
|
362 |
+
raise NotImplementedError(
|
363 |
+
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
|
364 |
+
)
|
365 |
+
num_tokens = 0
|
366 |
+
num_tokens += tokens_per_message
|
367 |
+
message = user_prompt + message
|
368 |
+
num_tokens += len(encoding.encode(message))
|
369 |
+
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
370 |
+
return f"Tokens 计数: {num_tokens}"
|
371 |
+
|
372 |
+
def on_token_change(user_token):
|
373 |
+
openai.api_key = user_token
|
374 |
+
|
375 |
+
def chat_with_gpt(input_message, system_prompt, user_prompt, temperature=0, max_tokens=4096):
|
376 |
+
system_content = [{ "role": "system", "content": system_prompt }]
|
377 |
+
user_content = [{ "role": "user", "content": user_prompt + input_message }]
|
378 |
+
try:
|
379 |
+
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_content + user_content, temperature=temperature, max_tokens=max_tokens)
|
380 |
+
response_msg = completion.choices[0].message['content']
|
381 |
+
|
382 |
+
prompt_tokens = completion['usage']['prompt_tokens']
|
383 |
+
completion_tokens = completion['usage']['completion_tokens']
|
384 |
+
total_tokens = completion['usage']['total_tokens']
|
385 |
+
print(f"==>> prompt_tokens: {prompt_tokens}")
|
386 |
+
print(f"==>> completion_tokens: {completion_tokens}")
|
387 |
+
print(f"==>> total_tokens: {total_tokens}")
|
388 |
+
return response_msg
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
return f"Error: {e}"
|
392 |
+
|
393 |
+
|
394 |
+
# -------------used for text post processing tab----------------
|
src/vad.py
CHANGED
@@ -203,8 +203,8 @@ class AbstractTranscription(ABC):
|
|
203 |
# Detected language
|
204 |
detected_language = languageCounter.most_common(1)[0][0] if len(languageCounter) > 0 else None
|
205 |
|
206 |
-
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ",
|
207 |
-
segment_duration, "expanded: ", segment_expand_amount, "prompt: ", segment_prompt, "language: ", detected_language)
|
208 |
|
209 |
perf_start_time = time.perf_counter()
|
210 |
|
@@ -213,7 +213,7 @@ class AbstractTranscription(ABC):
|
|
213 |
segment_result = whisperCallable.invoke(segment_audio, segment_index, segment_prompt, detected_language, progress_listener=scaled_progress_listener)
|
214 |
|
215 |
perf_end_time = time.perf_counter()
|
216 |
-
print("Whisper took {} seconds".format(perf_end_time - perf_start_time))
|
217 |
|
218 |
adjusted_segments = self.adjust_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
219 |
|
|
|
203 |
# Detected language
|
204 |
detected_language = languageCounter.most_common(1)[0][0] if len(languageCounter) > 0 else None
|
205 |
|
206 |
+
# print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ",
|
207 |
+
# segment_duration, "expanded: ", segment_expand_amount, "prompt: ", segment_prompt, "language: ", detected_language)
|
208 |
|
209 |
perf_start_time = time.perf_counter()
|
210 |
|
|
|
213 |
segment_result = whisperCallable.invoke(segment_audio, segment_index, segment_prompt, detected_language, progress_listener=scaled_progress_listener)
|
214 |
|
215 |
perf_end_time = time.perf_counter()
|
216 |
+
# print("Whisper took {} seconds".format(perf_end_time - perf_start_time))
|
217 |
|
218 |
adjusted_segments = self.adjust_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
219 |
|