import textwrap import unicodedata import re import time import zlib from typing import Iterator, TextIO, Union import tqdm import pyperclip import urllib3 import openai import tiktoken def exact_div(x, y): assert x % y == 0 return x // y def str2bool(string): str2val = {"True": True, "False": False} if string in str2val: return str2val[string] else: raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") def optional_int(string): return None if string == "None" else int(string) def optional_float(string): return None if string == "None" else float(string) def compression_ratio(text) -> float: return len(text) / len(zlib.compress(text.encode("utf-8"))) def format_timestamp(seconds: float, always_include_hours: bool = False, fractionalSeperator: str = '.'): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}" def write_txt(transcript: Iterator[dict], file: TextIO): for segment in transcript: print(segment['text'].strip(), file=file, flush=True) def write_vtt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None, highlight_words: bool = False): iterator = __subtitle_preprocessor_iterator(transcript, maxLineWidth, highlight_words) print("WEBVTT\n", file=file) for segment in iterator: text = segment['text'].replace('-->', '->') print( f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" f"{text}\n", file=file, flush=True, ) def write_srt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None, highlight_words: bool = False): """ Write a transcript to a file in SRT format. Example usage: from pathlib import Path from whisper.utils import write_srt result = transcribe(model, audio_path, temperature=temperature, **args) # save SRT audio_basename = Path(audio_path).stem with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: write_srt(result["segments"], file=srt) """ iterator = __subtitle_preprocessor_iterator(transcript, maxLineWidth, highlight_words) for i, segment in enumerate(iterator, start=1): text = segment['text'].replace('-->', '->') # write srt lines print( f"{i}\n" f"{format_timestamp(segment['start'], always_include_hours=True, fractionalSeperator=',')} --> " f"{format_timestamp(segment['end'], always_include_hours=True, fractionalSeperator=',')}\n" f"{text}\n", file=file, flush=True, ) def __subtitle_preprocessor_iterator(transcript: Iterator[dict], maxLineWidth: int = None, highlight_words: bool = False): for segment in transcript: words = segment.get('words', []) if len(words) == 0: # Yield the segment as-is or processed if maxLineWidth is None or maxLineWidth < 0: yield segment else: yield { 'start': segment['start'], 'end': segment['end'], 'text': process_text(segment['text'].strip(), maxLineWidth) } # We are done continue subtitle_start = segment['start'] subtitle_end = segment['end'] text_words = [ this_word["word"] for this_word in words ] subtitle_text = __join_words(text_words, maxLineWidth) # Iterate over the words in the segment if highlight_words: last = subtitle_start for i, this_word in enumerate(words): start = this_word['start'] end = this_word['end'] if last != start: # Display the text up to this point yield { 'start': last, 'end': start, 'text': subtitle_text } # Display the text with the current word highlighted yield { 'start': start, 'end': end, 'text': __join_words( [ { "word": re.sub(r"^(\s*)(.*)$", r"\1\2", word) if j == i else word, # The HTML tags and are not displayed, # # so they should not be counted in the word length "length": len(word) } for j, word in enumerate(text_words) ], maxLineWidth) } last = end if last != subtitle_end: # Display the last part of the text yield { 'start': last, 'end': subtitle_end, 'text': subtitle_text } # Just return the subtitle text else: yield { 'start': subtitle_start, 'end': subtitle_end, 'text': subtitle_text } def __join_words(words: Iterator[Union[str, dict]], maxLineWidth: int = None): if maxLineWidth is None or maxLineWidth < 0: return " ".join(words) lines = [] current_line = "" current_length = 0 for entry in words: # Either accept a string or a dict with a 'word' and 'length' field if isinstance(entry, dict): word = entry['word'] word_length = entry['length'] else: word = entry word_length = len(word) if current_length > 0 and current_length + word_length > maxLineWidth: lines.append(current_line) current_line = "" current_length = 0 current_length += word_length # The word will be prefixed with a space by Whisper, so we don't need to add one here current_line += word if len(current_line) > 0: lines.append(current_line) return "\n".join(lines) def process_text(text: str, maxLineWidth=None): if (maxLineWidth is None or maxLineWidth < 0): return text lines = textwrap.wrap(text, width=maxLineWidth, tabsize=4) return '\n'.join(lines) def slugify(value, allow_unicode=False): """ Taken from https://github.com/django/django/blob/master/django/utils/text.py Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated dashes to single dashes. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace, dashes, and underscores. """ value = str(value) if allow_unicode: value = unicodedata.normalize('NFKC', value) else: value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = re.sub(r'[^\w\s-]', '', value.lower()) return re.sub(r'[-\s]+', '-', value).strip('-_') def download_file(url: str, destination: str): with urllib3.request.urlopen(url) as source, open(destination, "wb") as output: with tqdm( total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024, ) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) # -------------used for text post processing tab---------------- system_prompt = "You are a helpful assistant." user_prompt = "请帮我把下面的文本纠正错别字并添加合适的标点符号,返回的消息只要处理后的文本:" def get_chunks(s, maxlength, separator=None): start = 0 end = 0 while start + maxlength < len(s) and end != -1: if separator is not None: end = s.rfind(separator, start, start + maxlength + 1) segment = s[start:end] yield segment.replace(separator, "") start = end +1 else: end = start + maxlength yield s[start:end] start = end yield s[start:] def post_processing(text, use_chatgpt, user_token, apply_correction, auto_punc, separator, remove_words): # print(f"==>> separator: {separator}") original_separator1 = " " original_separator2 = "," if use_chatgpt == True: if user_token == "": text = "请先设置你的OpenAI API Key,然后再重试" return text else: text = chat_with_gpt(text, system_prompt, user_prompt) return text # 对于长文本需要先分段再推理,推理完再合并 elif auto_punc == True: # 自动分段文本之前先去除原有的标点符号 text = text.replace(original_separator1, "") text = text.replace(original_separator2, "") import paddlehub as hub model = hub.Module(name='auto_punc', version='1.0.0') t3 = time.time() # split long text to short text less than max_length and store them in list max_length = 256 chunks = list(get_chunks(text, max_length)) results = [] results = model.add_puncs(chunks, max_length=max_length) text = ",".join(results) # 分段处硬编码成使用中文逗号分割 t4 = time.time() print("Auto punc finished. Cost time: {:.2f}s".format(t4-t3)) # print(f"==>> text after auto punc: {text}") else: # 将空格全部统一替换成一种分隔符 if separator == "\\n": # 直接使用separator会无法换行 text = text.replace(original_separator1, "\n") text = text.replace(original_separator2, "\n") else: text = text.replace(original_separator1, separator) text = text.replace(original_separator2, separator) if apply_correction == True: import pycorrector print("Start correcting...") t1 = time.time() text, detail = pycorrector.correct(text) t2 = time.time() print("Correcting finished. Cost time: {:.2f}s".format(t2-t1)) print(f"==>> detail: {detail}") # 去掉语气词 t5 = time.time() remove_words = remove_words.split(",") + remove_words.split(",") + remove_words.split(" ") for word in remove_words: text = text.replace(word, "") t6 = time.time() print("Remove words finished. Cost time: {:.2f}s".format(t6-t5)) return text def replace(text, src_word, target_word): text = text.replace(src_word, target_word) return text def copy_text(text): pyperclip.copy(text) def num_tokens_from_messages(message): """Return the number of tokens used by a list of messages.""" model="gpt-3.5-turbo-0613" try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model in { "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-4-0314", "gpt-4-32k-0314", "gpt-4-0613", "gpt-4-32k-0613", }: tokens_per_message = 3 tokens_per_name = 1 elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif "gpt-3.5-turbo" in model: print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.") return num_tokens_from_messages(message, model="gpt-3.5-turbo-0613") elif "gpt-4" in model: print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.") return num_tokens_from_messages(message, model="gpt-4-0613") else: raise NotImplementedError( f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" ) num_tokens = 0 num_tokens += tokens_per_message message = user_prompt + message num_tokens += len(encoding.encode(message)) num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return f"Tokens 计数: {num_tokens}" def on_token_change(user_token): openai.api_key = user_token def chat_with_gpt(input_message, system_prompt, user_prompt, temperature=0, max_tokens=4096): system_content = [{ "role": "system", "content": system_prompt }] user_content = [{ "role": "user", "content": user_prompt + input_message }] try: completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_content + user_content, temperature=temperature, max_tokens=max_tokens) response_msg = completion.choices[0].message['content'] prompt_tokens = completion['usage']['prompt_tokens'] completion_tokens = completion['usage']['completion_tokens'] total_tokens = completion['usage']['total_tokens'] print(f"==>> prompt_tokens: {prompt_tokens}") print(f"==>> completion_tokens: {completion_tokens}") print(f"==>> total_tokens: {total_tokens}") return response_msg except Exception as e: return f"Error: {e}" # -------------used for text post processing tab----------------