Update app.py
Browse files
app.py
CHANGED
@@ -2,72 +2,71 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
|
5 |
-
api_key=os.environ.get('qwen_API_KEY')
|
6 |
"""
|
7 |
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
-
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct",token=api_key)
|
10 |
|
11 |
def respond(
|
12 |
-
message,
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p
|
18 |
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
if val[0]:
|
24 |
-
messages.append({"role": "user", "content": val[0]})
|
25 |
-
if val[1]:
|
26 |
-
messages.append({"role": "assistant", "content": val[1]})
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
max_tokens=max_tokens,
|
35 |
-
stream=True,
|
36 |
-
temperature=temperature,
|
37 |
-
top_p=top_p
|
38 |
-
):
|
39 |
-
token = message.choices[0].delta.content
|
40 |
-
|
41 |
-
response += token
|
42 |
-
yield response
|
43 |
|
44 |
example_prompts = [
|
45 |
-
["How to cook Kung Pao chicken the tastiest?"],
|
46 |
-
["你是谁开发的?"],
|
47 |
-
["写一篇关于青春的五言绝句"],
|
48 |
-
["你是谁?"]
|
49 |
]
|
50 |
latex_delimiters = [
|
51 |
{"left": "$$", "right": "$$", "display": True},
|
52 |
-
{"left": "\\[", "right": "\\]", "display": True},
|
|
|
53 |
{"left": "\\(", "right": "\\)", "display": False}
|
54 |
]
|
55 |
|
56 |
demo = gr.ChatInterface(
|
57 |
-
respond,
|
58 |
-
examples=example_prompts,
|
59 |
-
title="千问2.5-72B",
|
60 |
-
description="千问2.5-72B聊天机器人",
|
61 |
-
additional_inputs=[
|
62 |
-
gr.Textbox(value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", label="System message"),
|
63 |
-
gr.Slider(minimum=1, maximum=8888, value=2048, step=1, label="Max new tokens"),
|
64 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
65 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
66 |
-
],
|
67 |
-
chatbot=gr.Chatbot(show_label=True,latex_delimiters=latex_delimiters, show_copy_button=True)
|
68 |
-
|
69 |
)
|
70 |
|
71 |
-
if
|
72 |
-
demo.queue(default_concurrency_limit=40)
|
73 |
-
demo.launch(max_threads=40)
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
|
5 |
+
api_key = os.environ.get('qwen_API_KEY')
|
6 |
"""
|
7 |
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
+
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct", token=api_key)
|
10 |
|
11 |
def respond(
|
12 |
+
message,
|
13 |
+
history: list[tuple[str, str]],
|
14 |
+
system_message,
|
15 |
+
max_tokens,
|
16 |
+
temperature,
|
17 |
+
top_p
|
18 |
):
|
19 |
+
messages = [{"role": "system", "content": system_message}]
|
20 |
|
21 |
+
for val in history:
|
22 |
+
if val[0]:
|
23 |
+
messages.append({"role": "user", "content": val[0]})
|
24 |
+
if val[1]:
|
25 |
+
messages.append({"role": "assistant", "content": val[1]})
|
26 |
|
27 |
+
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
response = ""
|
30 |
|
31 |
+
for message in client.chat_completion(
|
32 |
+
messages,
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
stream_response=True,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p
|
37 |
+
):
|
38 |
+
token = message.choices[0].delta.content
|
39 |
|
40 |
+
response += token
|
41 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
example_prompts = [
|
44 |
+
["How to cook Kung Pao chicken the tastiest?", ""],
|
45 |
+
["你是谁开发的?", ""],
|
46 |
+
["写一篇关于青春的五言绝句", ""],
|
47 |
+
["你是谁?", ""]
|
48 |
]
|
49 |
latex_delimiters = [
|
50 |
{"left": "$$", "right": "$$", "display": True},
|
51 |
+
{"left": "\\[", "right": "\\]", "display": True},
|
52 |
+
{"left": "$", "right": "$", "display": False},
|
53 |
{"left": "\\(", "right": "\\)", "display": False}
|
54 |
]
|
55 |
|
56 |
demo = gr.ChatInterface(
|
57 |
+
fn=respond,
|
58 |
+
examples=example_prompts,
|
59 |
+
title="千问2.5-72B",
|
60 |
+
description="千问2.5-72B聊天机器人",
|
61 |
+
additional_inputs=[
|
62 |
+
gr.Textbox(value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", label="System message"),
|
63 |
+
gr.Slider(minimum=1, maximum=8888, value=2048, step=1, label="Max new tokens"),
|
64 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
65 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
66 |
+
],
|
67 |
+
chatbot=gr.Chatbot(show_label=True, latex_delimiters=latex_delimiters, show_copy_button=True)
|
|
|
68 |
)
|
69 |
|
70 |
+
if __name__ == "__main__":
|
71 |
+
demo.queue(default_concurrency_limit=40)
|
72 |
+
demo.launch(max_threads=40)
|