File size: 5,780 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from typing import Optional

import torch
import torch.nn as nn
from torch.distributions.distribution import Distribution

from mld.models.operator.attention import (
    SkipTransformerEncoder,
    SkipTransformerDecoder,
    TransformerDecoder,
    TransformerDecoderLayer,
    TransformerEncoder,
    TransformerEncoderLayer
)
from mld.models.operator.position_encoding import build_position_encoding


class MldVae(nn.Module):

    def __init__(self,
                 nfeats: int,
                 latent_dim: list = [1, 256],
                 hidden_dim: Optional[int] = None,
                 force_pre_post_proj: bool = False,
                 ff_size: int = 1024,
                 num_layers: int = 9,
                 num_heads: int = 4,
                 dropout: float = 0.1,
                 arch: str = "encoder_decoder",
                 normalize_before: bool = False,
                 norm_eps: float = 1e-5,
                 activation: str = "gelu",
                 norm_post: bool = True,
                 activation_post: Optional[str] = None,
                 position_embedding: str = "learned") -> None:
        super(MldVae, self).__init__()

        self.latent_size = latent_dim[0]
        self.latent_dim = latent_dim[-1] if hidden_dim is None else hidden_dim
        add_pre_post_proj = force_pre_post_proj or (hidden_dim is not None and hidden_dim != latent_dim[-1])
        self.latent_pre = nn.Linear(self.latent_dim, latent_dim[-1]) if add_pre_post_proj else nn.Identity()
        self.latent_post = nn.Linear(latent_dim[-1], self.latent_dim) if add_pre_post_proj else nn.Identity()

        self.arch = arch

        self.query_pos_encoder = build_position_encoding(
            self.latent_dim, position_embedding=position_embedding)

        encoder_layer = TransformerEncoderLayer(
            self.latent_dim,
            num_heads,
            ff_size,
            dropout,
            activation,
            normalize_before,
            norm_eps
        )
        encoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None
        self.encoder = SkipTransformerEncoder(encoder_layer, num_layers, encoder_norm, activation_post)

        if self.arch == "all_encoder":
            decoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None
            self.decoder = SkipTransformerEncoder(encoder_layer, num_layers, decoder_norm, activation_post)
        elif self.arch == 'encoder_decoder':
            self.query_pos_decoder = build_position_encoding(
                self.latent_dim, position_embedding=position_embedding)

            decoder_layer = TransformerDecoderLayer(
                self.latent_dim,
                num_heads,
                ff_size,
                dropout,
                activation,
                normalize_before,
                norm_eps
            )
            decoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None
            self.decoder = SkipTransformerDecoder(decoder_layer, num_layers, decoder_norm, activation_post)
        else:
            raise ValueError(f"Not support architecture: {self.arch}!")

        self.global_motion_token = nn.Parameter(torch.randn(self.latent_size * 2, self.latent_dim))
        self.skel_embedding = nn.Linear(nfeats, self.latent_dim)
        self.final_layer = nn.Linear(self.latent_dim, nfeats)

    def forward(self, features: torch.Tensor, mask: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, Distribution]:
        z, dist = self.encode(features, mask)
        feats_rst = self.decode(z, mask)
        return feats_rst, z, dist

    def encode(self, features: torch.Tensor, mask: torch.Tensor) -> tuple[torch.Tensor, Distribution]:
        bs, nframes, nfeats = features.shape
        x = self.skel_embedding(features)
        x = x.permute(1, 0, 2)
        dist = torch.tile(self.global_motion_token[:, None, :], (1, bs, 1))
        dist_masks = torch.ones((bs, dist.shape[0]), dtype=torch.bool, device=x.device)
        aug_mask = torch.cat((dist_masks, mask), 1)
        xseq = torch.cat((dist, x), 0)

        xseq = self.query_pos_encoder(xseq)
        dist = self.encoder(xseq, src_key_padding_mask=~aug_mask)[0][:dist.shape[0]]
        dist = self.latent_pre(dist)

        mu = dist[0:self.latent_size, ...]
        logvar = dist[self.latent_size:, ...]

        std = logvar.exp().pow(0.5)
        dist = torch.distributions.Normal(mu, std)
        latent = dist.rsample()
        # [latent_dim[0], batch_size, latent_dim] -> [batch_size, latent_dim[0], latent_dim[1]]
        latent = latent.permute(1, 0, 2)
        return latent, dist

    def decode(self, z: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        # [batch_size, latent_dim[0], latent_dim[1]] -> [latent_dim[0], batch_size, latent_dim[1]]
        z = self.latent_post(z)
        z = z.permute(1, 0, 2)
        bs, nframes = mask.shape
        queries = torch.zeros(nframes, bs, self.latent_dim, device=z.device)

        if self.arch == "all_encoder":
            xseq = torch.cat((z, queries), axis=0)
            z_mask = torch.ones((bs, self.latent_size), dtype=torch.bool, device=z.device)
            aug_mask = torch.cat((z_mask, mask), axis=1)
            xseq = self.query_pos_decoder(xseq)
            output = self.decoder(xseq, src_key_padding_mask=~aug_mask)[0][z.shape[0]:]
        elif self.arch == "encoder_decoder":
            queries = self.query_pos_decoder(queries)
            output = self.decoder(tgt=queries, memory=z, tgt_key_padding_mask=~mask)[0]
        else:
            raise ValueError(f"Not support architecture: {self.arch}!")

        output = self.final_layer(output)
        output[~mask.T] = 0
        feats = output.permute(1, 0, 2)
        return feats