from typing import Optional import torch import torch.nn as nn from .utils import get_clone, get_clones, get_activation_fn class SkipTransformerEncoder(nn.Module): def __init__(self, encoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, act: Optional[str] = None, is_controlnet: bool = False, is_moe: bool = False) -> None: super().__init__() self.d_model = encoder_layer.d_model self.num_layers = num_layers self.norm = norm self.act = get_activation_fn(act) self.is_controlnet = is_controlnet self.is_moe = is_moe assert num_layers % 2 == 1 num_block = (num_layers - 1) // 2 self.input_blocks = get_clones(encoder_layer, num_block) self.middle_block = get_clone(encoder_layer) self.output_blocks = get_clones(encoder_layer, num_block) self.linear_blocks = get_clones(nn.Linear(2 * self.d_model, self.d_model), num_block) self._reset_parameters() def _reset_parameters(self) -> None: for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def maybe_controlnet_moe( self, x: torch.Tensor, controlnet_residuals: Optional[list[torch.Tensor]] = None, all_intermediates: Optional[tuple] = None, all_router_logits: Optional[tuple] = None ) -> tuple: if self.is_moe: all_router_logits += (x[1],) x = x[0] if controlnet_residuals is not None: x = x + controlnet_residuals.pop() if self.is_controlnet: all_intermediates += (x,) return x, controlnet_residuals, all_intermediates, all_router_logits def forward(self, src: torch.Tensor, mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None, controlnet_residuals: Optional[list[torch.Tensor]] = None) -> tuple: x = src xs = [] all_intermediates = () if self.is_controlnet else None all_router_logits = () if self.is_moe else None if controlnet_residuals is not None: controlnet_residuals.reverse() for module in self.input_blocks: x = module(x, src_mask=mask, src_key_padding_mask=src_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) xs.append(x) x = self.middle_block(x, src_mask=mask, src_key_padding_mask=src_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) for (module, linear) in zip(self.output_blocks, self.linear_blocks): x = torch.cat([x, xs.pop()], dim=-1) x = linear(x) x = module(x, src_mask=mask, src_key_padding_mask=src_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) if self.norm: x = self.act(self.norm(x)) return x, all_intermediates, all_router_logits class SkipTransformerDecoder(nn.Module): def __init__(self, decoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, act: Optional[str] = None, is_controlnet: bool = False, is_moe: bool = False) -> None: super().__init__() self.d_model = decoder_layer.d_model self.num_layers = num_layers self.norm = norm self.act = get_activation_fn(act) self.is_controlnet = is_controlnet self.is_moe = is_moe assert num_layers % 2 == 1 num_block = (num_layers - 1) // 2 self.input_blocks = get_clones(decoder_layer, num_block) self.middle_block = get_clone(decoder_layer) self.output_blocks = get_clones(decoder_layer, num_block) self.linear_blocks = get_clones(nn.Linear(2 * self.d_model, self.d_model), num_block) self._reset_parameters() def _reset_parameters(self) -> None: for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def maybe_controlnet_moe( self, x: torch.Tensor, controlnet_residuals: Optional[list[torch.Tensor]] = None, all_intermediates: Optional[tuple] = None, all_router_logits: Optional[tuple] = None ) -> tuple: if self.is_moe: all_router_logits += (x[1],) x = x[0] if self.is_controlnet: x = x + controlnet_residuals.pop() all_intermediates += (x,) return x, controlnet_residuals, all_intermediates, all_router_logits def forward(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None, controlnet_residuals: Optional[list[torch.Tensor]] = None) -> tuple: x = tgt xs = [] all_intermediates = () if self.is_controlnet else None all_router_logits = () if self.is_moe else None if controlnet_residuals is not None: controlnet_residuals.reverse() for module in self.input_blocks: x = module(x, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) xs.append(x) x = self.middle_block(x, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) for (module, linear) in zip(self.output_blocks, self.linear_blocks): x = torch.cat([x, xs.pop()], dim=-1) x = linear(x) x = module(x, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) x, controlnet_residuals, all_intermediates, all_router_logits = self.maybe_controlnet_moe( x, controlnet_residuals, all_intermediates, all_router_logits) if self.norm: x = self.act(self.norm(x)) return x, all_intermediates, all_router_logits class TransformerEncoder(nn.Module): def __init__(self, encoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, act: Optional[str] = None, return_intermediate: bool = False) -> None: super().__init__() self.layers = get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.return_intermediate = return_intermediate self.norm = norm self.act = get_activation_fn(act) def forward(self, src: torch.Tensor, mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None, controlnet_residuals: Optional[list[torch.Tensor]] = None) -> torch.Tensor: output = src intermediate = [] index = 0 for layer in self.layers: output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask) if controlnet_residuals is not None: output = output + controlnet_residuals[index] index += 1 if self.return_intermediate: intermediate.append(output) if self.norm: output = self.act(self.norm(output)) if self.return_intermediate: return torch.stack(intermediate) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, act: Optional[str] = None, return_intermediate: bool = False) -> None: super().__init__() self.layers = get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.return_intermediate = return_intermediate self.norm = norm self.act = get_activation_fn(act) def forward(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None, controlnet_residuals: Optional[list[torch.Tensor]] = None) -> torch.Tensor: output = tgt intermediate = [] index = 0 for layer in self.layers: output = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) if controlnet_residuals is not None: output = output + controlnet_residuals[index] index += 1 if self.return_intermediate: intermediate.append(output) if self.norm: output = self.act(self.norm(output)) if self.return_intermediate: return torch.stack(intermediate) return output class TransformerEncoderLayer(nn.Module): def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: str = "relu", normalize_before: bool = False, norm_eps: float = 1e-5) -> None: super(TransformerEncoderLayer, self).__init__() self.d_model = d_model self.activation_name = activation self.normalize_before = normalize_before self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward if activation != 'geglu' else dim_feedforward * 2) self.activation = get_activation_fn(activation) if activation != 'geglu' else nn.GELU() self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model, eps=norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) def forward_post(self, src: torch.Tensor, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: src2 = self.self_attn(src, src, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) if self.activation_name == 'geglu': src2, gate = self.linear1(src).chunk(2, dim=-1) src2 = src2 * self.activation(gate) else: src2 = self.activation(self.linear1(src)) src2 = self.linear2(self.dropout(src2)) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src: torch.Tensor, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: src2 = self.norm1(src) src2 = self.self_attn(src2, src2, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) if self.activation_name == 'geglu': src2, gate = self.linear1(src2).chunk(2, dim=-1) src2 = src2 * self.activation(gate) else: src2 = self.activation(self.linear1(src2)) src2 = self.linear2(self.dropout(src2)) src = src + self.dropout2(src2) return src def forward(self, src: torch.Tensor, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask) return self.forward_post(src, src_mask, src_key_padding_mask) class TransformerDecoderLayer(nn.Module): def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: str = "relu", normalize_before: bool = False, norm_eps: float = 1e-5) -> None: super(TransformerDecoderLayer, self).__init__() self.d_model = d_model self.activation_name = activation self.normalize_before = normalize_before self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward if activation != 'geglu' else dim_feedforward * 2) self.activation = get_activation_fn(activation) if activation != 'geglu' else nn.GELU() self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model, eps=norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=norm_eps) self.norm3 = nn.LayerNorm(d_model, eps=norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) def forward_post(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: tgt2 = self.self_attn(tgt, tgt, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(query=tgt, key=memory, value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) if self.activation_name == 'geglu': tgt2, gate = self.linear1(tgt).chunk(2, dim=-1) tgt2 = tgt2 * self.activation(gate) else: tgt2 = self.activation(self.linear1(tgt)) tgt2 = self.linear2(self.dropout(tgt2)) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: tgt2 = self.norm1(tgt) tgt2 = self.self_attn(tgt2, tgt2, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn(query=tgt2, key=memory, value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) if self.activation_name == 'geglu': tgt2, gate = self.linear1(tgt2).chunk(2, dim=-1) tgt2 = tgt2 * self.activation(gate) else: tgt2 = self.activation(self.linear1(tgt2)) tgt2 = self.linear2(self.dropout(tgt2)) tgt = tgt + self.dropout3(tgt2) return tgt def forward(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if self.normalize_before: return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask) return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)