from typing import Optional import torch import torch.nn as nn from .utils import get_activation_fn class ResConv1DBlock(nn.Module): def __init__(self, n_in: int, n_state: int, dilation: int = 1, activation: str = 'silu', dropout: float = 0.1, norm: Optional[str] = None, norm_groups: int = 32, norm_eps: float = 1e-5) -> None: super(ResConv1DBlock, self).__init__() self.norm = norm if norm == "LN": self.norm1 = nn.LayerNorm(n_in, eps=norm_eps) self.norm2 = nn.LayerNorm(n_in, eps=norm_eps) elif norm == "GN": self.norm1 = nn.GroupNorm(num_groups=norm_groups, num_channels=n_in, eps=norm_eps) self.norm2 = nn.GroupNorm(num_groups=norm_groups, num_channels=n_in, eps=norm_eps) elif norm == "BN": self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=norm_eps) self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=norm_eps) else: self.norm1 = nn.Identity() self.norm2 = nn.Identity() self.activation = get_activation_fn(activation) self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding=dilation, dilation=dilation) self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0) self.dropout = nn.Dropout(dropout) def forward(self, x: torch.Tensor) -> torch.Tensor: x_orig = x if self.norm == "LN": x = self.norm1(x.transpose(-2, -1)) x = self.activation(x.transpose(-2, -1)) else: x = self.norm1(x) x = self.activation(x) x = self.conv1(x) if self.norm == "LN": x = self.norm2(x.transpose(-2, -1)) x = self.activation(x.transpose(-2, -1)) else: x = self.norm2(x) x = self.activation(x) x = self.conv2(x) x = self.dropout(x) x = x + x_orig return x class Resnet1D(nn.Module): def __init__(self, n_in: int, n_state: int, n_depth: int, reverse_dilation: bool = True, dilation_growth_rate: int = 3, activation: str = 'relu', dropout: float = 0.1, norm: Optional[str] = None, norm_groups: int = 32, norm_eps: float = 1e-5) -> None: super(Resnet1D, self).__init__() blocks = [ResConv1DBlock(n_in, n_state, dilation=dilation_growth_rate ** depth, activation=activation, dropout=dropout, norm=norm, norm_groups=norm_groups, norm_eps=norm_eps) for depth in range(n_depth)] if reverse_dilation: blocks = blocks[::-1] self.model = nn.Sequential(*blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x) class ResEncoder(nn.Module): def __init__(self, in_width: int = 263, mid_width: int = 512, out_width: int = 512, down_t: int = 2, stride_t: int = 2, n_depth: int = 3, dilation_growth_rate: int = 3, activation: str = 'relu', dropout: float = 0.1, norm: Optional[str] = None, norm_groups: int = 32, norm_eps: float = 1e-5, double_z: bool = False) -> None: super(ResEncoder, self).__init__() blocks = [] filter_t, pad_t = stride_t * 2, stride_t // 2 blocks.append(nn.Conv1d(in_width, mid_width, 3, 1, 1)) blocks.append(get_activation_fn(activation)) for i in range(down_t): block = nn.Sequential( nn.Conv1d(mid_width, mid_width, filter_t, stride_t, pad_t), Resnet1D(mid_width, mid_width, n_depth, reverse_dilation=True, dilation_growth_rate=dilation_growth_rate, activation=activation, dropout=dropout, norm=norm, norm_groups=norm_groups, norm_eps=norm_eps)) blocks.append(block) blocks.append(nn.Conv1d(mid_width, out_width * 2 if double_z else out_width, 3, 1, 1)) self.model = nn.Sequential(*blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x.permute(0, 2, 1)) # B x C x T class ResDecoder(nn.Module): def __init__(self, in_width: int = 263, mid_width: int = 512, out_width: int = 512, down_t: int = 2, stride_t: int = 2, n_depth: int = 3, dilation_growth_rate: int = 3, activation: str = 'relu', dropout: float = 0.1, norm: Optional[str] = None, norm_groups: int = 32, norm_eps: float = 1e-5) -> None: super(ResDecoder, self).__init__() blocks = [nn.Conv1d(out_width, mid_width, 3, 1, 1), get_activation_fn(activation)] for i in range(down_t): block = nn.Sequential( Resnet1D(mid_width, mid_width, n_depth, reverse_dilation=True, dilation_growth_rate=dilation_growth_rate, activation=activation, dropout=dropout, norm=norm, norm_groups=norm_groups, norm_eps=norm_eps), nn.Upsample(scale_factor=stride_t, mode='nearest'), nn.Conv1d(mid_width, mid_width, 3, 1, 1)) blocks.append(block) blocks.append(nn.Conv1d(mid_width, mid_width, 3, 1, 1)) blocks.append(get_activation_fn(activation)) blocks.append(nn.Conv1d(mid_width, in_width, 3, 1, 1)) self.model = nn.Sequential(*blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x).permute(0, 2, 1) # B x T x C