Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,796 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
from util.tables import *
__all__ = [
'FlexiCubes'
]
class FlexiCubes:
"""
This class implements the FlexiCubes method for extracting meshes from scalar fields.
It maintains a series of lookup tables and indices to support the mesh extraction process.
FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
the surface representation through gradient-based optimization.
During instantiation, the class loads DMC tables from a file and transforms them into
PyTorch tensors on the specified device.
Attributes:
device (str): Specifies the computational device (default is "cuda").
dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
associated with each dual vertex in 256 Marching Cubes (MC) configurations.
num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
the 256 MC configurations.
check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
of the DMC configurations.
tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
along one diagonal.
quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
two triangles along the other diagonal.
quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
during training by connecting all edges to their midpoints.
cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
eight corners in 3D space, ordered starting from the origin (0,0,0),
moving along the x-axis, then y-axis, and finally z-axis.
Used as a blueprint for generating a voxel grid.
cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
to retrieve the case id.
cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
Used to retrieve edge vertices in DMC.
edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
first edge is oriented along the x-axis.
dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
across four adjacent cubes to the shared faces of these cubes. For instance,
dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
This tensor is only utilized during isosurface tetrahedralization.
adj_pairs (torch.Tensor):
A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
qef_reg_scale (float):
The scaling factor applied to the regularization loss to prevent issues with singularity
when solving the QEF. This parameter is only used when a 'grad_func' is specified.
weight_scale (float):
The scale of weights in FlexiCubes. Should be between 0 and 1.
"""
def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
self.device = device
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
self.num_vd_table = torch.tensor(num_vd_table,
dtype=torch.long, device=device, requires_grad=False)
self.check_table = torch.tensor(
check_table,
dtype=torch.long, device=device, requires_grad=False)
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
self.quad_split_train = torch.tensor(
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
dtype=torch.long, device=device)
self.dir_faces_table = torch.tensor([
[[5, 4], [3, 2], [4, 5], [2, 3]],
[[5, 4], [1, 0], [4, 5], [0, 1]],
[[3, 2], [1, 0], [2, 3], [0, 1]]
], dtype=torch.long, device=device)
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
self.qef_reg_scale = qef_reg_scale
self.weight_scale = weight_scale
def construct_voxel_grid(self, res):
"""
Generates a voxel grid based on the specified resolution.
Args:
res (int or list[int]): The resolution of the voxel grid. If an integer
is provided, it is used for all three dimensions. If a list or tuple
of 3 integers is provided, they define the resolution for the x,
y, and z dimensions respectively.
Returns:
(torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
cube corners (index into vertices) of the constructed voxel grid.
The vertices are centered at the origin, with the length of each
dimension in the grid being one.
"""
base_cube_f = torch.arange(8).to(self.device)
if isinstance(res, int):
res = (res, res, res)
voxel_grid_template = torch.ones(res, device=self.device)
res = torch.tensor([res], dtype=torch.float, device=self.device)
coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
cubes = (base_cube_f.unsqueeze(0) +
torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
verts_rounded = torch.round(verts * 10**5) / (10**5)
verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
return verts_unique - 0.5, cubes
def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
r"""
Main function for mesh extraction from scalar field using FlexiCubes. This function converts
discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
to triangle or tetrahedral meshes using a differentiable operation as described in
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
mesh quality and geometric fidelity by adjusting the surface representation based on gradient
optimization. The output surface is differentiable with respect to the input vertex positions,
scalar field values, and weight parameters.
If you intend to extract a surface mesh from a fixed Signed Distance Field without the
optimization of parameters, it is suggested to provide the "grad_func" which should
return the surface gradient at any given 3D position. When grad_func is provided, the process
to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
Please note, this approach is non-differentiable.
For more details and example usage in optimization, refer to the
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
Args:
x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
denote that the corresponding vertex resides inside the isosurface. This affects
the directions of the extracted triangle faces and volume to be tetrahedralized.
cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
is used for all three dimensions. If a list or tuple of 3 integers is provided, they
specify the resolution for the x, y, and z dimensions respectively.
beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
vertices positioning. Defaults to uniform value for all edges.
alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
vertices positioning. Defaults to uniform value for all vertices.
gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
quadrilaterals into triangles. Defaults to uniform value for all cubes.
training (bool, optional): If set to True, applies differentiable quad splitting for
training. Defaults to False.
output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
outputs a triangular mesh. Defaults to False.
grad_func (callable, optional): A function to compute the surface gradient at specified
3D positions (input: Nx3 positions). The function should return gradients as an Nx3
tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
Returns:
(torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
- Vertices for the extracted triangular/tetrahedral mesh.
- Faces for the extracted triangular/tetrahedral mesh.
- Regularizer L_dev, computed per dual vertex.
.. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
https://research.nvidia.com/labs/toronto-ai/flexicubes/
.. _Manifold Dual Contouring:
https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
"""
surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
if surf_cubes.sum() == 0:
return torch.zeros(
(0, 3),
device=self.device), torch.zeros(
(0, 4),
dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
(0, 3),
dtype=torch.long, device=self.device), torch.zeros(
(0),
device=self.device)
beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
vertices, faces, s_edges, edge_indices = self._triangulate(
s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
if not output_tetmesh:
return vertices, faces, L_dev
else:
vertices, tets = self._tetrahedralize(
x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
surf_cubes, training)
return vertices, tets, L_dev
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
"""
Regularizer L_dev as in Equation 8
"""
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
mean_l2 = torch.zeros_like(vd[:, 0])
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
return mad
def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
"""
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
"""
n_cubes = surf_cubes.shape[0]
if beta_fx12 is not None:
beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
else:
beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
if alpha_fx8 is not None:
alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
else:
alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
if gamma_f is not None:
gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
else:
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
@torch.no_grad()
def _get_case_id(self, occ_fx8, surf_cubes, res):
"""
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
supplementary material. It should be noted that this function assumes a regular grid.
"""
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
problem_config = self.check_table.to(self.device)[case_ids]
to_check = problem_config[..., 0] == 1
problem_config = problem_config[to_check]
if not isinstance(res, (list, tuple)):
res = [res, res, res]
# The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
# 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
# This allows efficient checking on adjacent cubes.
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
vol_idx_problem = vol_idx[surf_cubes][to_check]
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
within_range = (
vol_idx_problem_adj[..., 0] >= 0) & (
vol_idx_problem_adj[..., 0] < res[0]) & (
vol_idx_problem_adj[..., 1] >= 0) & (
vol_idx_problem_adj[..., 1] < res[1]) & (
vol_idx_problem_adj[..., 2] >= 0) & (
vol_idx_problem_adj[..., 2] < res[2])
vol_idx_problem = vol_idx_problem[within_range]
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
problem_config = problem_config[within_range]
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
# If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
to_invert = (problem_config_adj[..., 0] == 1)
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
return case_ids
@torch.no_grad()
def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
"""
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
and marks the cube edges with this index.
"""
occ_n = s_n < 0
all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
surf_edges_mask = mask_edges[_idx_map]
counts = counts[_idx_map]
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
idx_map = mapping[_idx_map]
surf_edges = unique_edges[mask_edges]
return surf_edges, idx_map, counts, surf_edges_mask
@torch.no_grad()
def _identify_surf_cubes(self, s_n, cube_fx8):
"""
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
all corners are not identical.
"""
occ_n = s_n < 0
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
_occ_sum = torch.sum(occ_fx8, -1)
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
return surf_cubes, occ_fx8
def _linear_interp(self, edges_weight, edges_x):
"""
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
"""
edge_dim = edges_weight.dim() - 2
assert edges_weight.shape[edge_dim] == 2
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
denominator = edges_weight.sum(edge_dim)
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
return ue
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
c_bx3 = c_bx3.reshape(-1, 3)
A = norm_bxnx3
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
A = torch.cat([A, A_reg], 1)
B = torch.cat([B, B_reg], 1)
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
return dual_verts
def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
"""
Computes the location of dual vertices as described in Section 4.2
"""
alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
idx_map = idx_map.reshape(-1, 12)
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
total_num_vd = 0
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
if grad_func is not None:
normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
vd = []
for num in torch.unique(num_vd):
cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
curr_num_vd = cur_cubes.sum() * num
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
curr_edge_group_to_vd = torch.arange(
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
total_num_vd += curr_num_vd
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
curr_mask = (curr_edge_group != -1)
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
if grad_func is not None:
with torch.no_grad():
cube_e_verts_idx = idx_map[cur_cubes]
curr_edge_group[~curr_mask] = 0
verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
verts_group_idx[verts_group_idx == -1] = 0
verts_group_pos = torch.index_select(
input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
-1, num.item(), 7,
3)
curr_mask = curr_mask.squeeze(2)
vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
edge_group = torch.cat(edge_group)
edge_group_to_vd = torch.cat(edge_group_to_vd)
edge_group_to_cube = torch.cat(edge_group_to_cube)
vd_num_edges = torch.cat(vd_num_edges)
vd_gamma = torch.cat(vd_gamma)
if grad_func is not None:
vd = torch.cat(vd)
L_dev = torch.zeros([1], device=self.device)
else:
vd = torch.zeros((total_num_vd, 3), device=self.device)
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
zero_crossing_group = torch.index_select(
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
ue_group = self._linear_interp(s_group * alpha_group, x_group)
beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
12 + edge_group, src=v_idx[edge_group_to_vd])
return vd, L_dev, vd_gamma, vd_idx_map
def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
"""
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
triangles based on the gamma parameter, as described in Section 4.3.
"""
with torch.no_grad():
group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
group = idx_map.reshape(-1)[group_mask]
vd_idx = vd_idx_map[group_mask]
edge_indices, indices = torch.sort(group, stable=True)
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
# Ensure all face directions point towards the positive SDF to maintain consistent winding.
s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
flip_mask = s_edges[:, 0] > 0
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
if grad_func is not None:
# when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
with torch.no_grad():
vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
else:
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
if not training:
mask = (gamma_02 > gamma_13).squeeze(1)
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
faces = faces.reshape(-1, 3)
else:
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
weight_sum = (gamma_02 + gamma_13) + 1e-8
vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
weight_sum.unsqueeze(-1)).squeeze(1)
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
vd = torch.cat([vd, vd_center])
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
return vd, faces, s_edges, edge_indices
def _tetrahedralize(
self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
surf_cubes, training):
"""
Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
"""
occ_n = s_n < 0
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
occ_sum = torch.sum(occ_fx8, -1)
inside_verts = x_nx3[occ_n]
mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
"""
For each grid edge connecting two grid vertices with different
signs, we first form a four-sided pyramid by connecting one
of the grid vertices with four mesh vertices that correspond
to the grid edge and then subdivide the pyramid into two tetrahedra
"""
inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
s_edges < 0]]
if not training:
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
else:
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
"""
For each grid edge connecting two grid vertices with the
same sign, the tetrahedron is formed by the two grid vertices
and two vertices in consecutive adjacent cells
"""
inside_cubes = (occ_sum == 8)
inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
inside_cubes_center_idx = torch.arange(
inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
surface_n_inside_cubes = surf_cubes | inside_cubes
edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
dtype=torch.long, device=x_nx3.device) * -1
surf_cubes = surf_cubes[surface_n_inside_cubes]
inside_cubes = inside_cubes[surface_n_inside_cubes]
edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
mask = mask_edges[_idx_map]
counts = counts[_idx_map]
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
idx_map = mapping[_idx_map]
group_mask = (counts == 4) & mask
group = idx_map.reshape(-1)[group_mask]
edge_indices, indices = torch.sort(group)
cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
# Identify the face shared by the adjacent cells.
cube_idx_4 = cube_idx[indices].reshape(-1, 4)
edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
# Identify an edge of the face with different signs and
# select the mesh vertex corresponding to the identified edge.
case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
case_ids_expand[surf_cubes] = case_ids
cases = case_ids_expand[cube_idx_4x2]
quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
mask = (quad_edge == -1).sum(-1) == 0
inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
tets = torch.cat([tets_surface, tets_inside])
vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
return vertices, tets
|