Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,164 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import numpy as np
import torch
import random
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovx=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
# y = np.tan(fovy / 2)
x = np.tan(fovx / 2)
return torch.tensor([[1/x, 0, 0, 0],
[ 0, -aspect/x, 0, 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
def translate(x, y, z, device=None):
return torch.tensor([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c, -s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_z(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[c, -s, 0, 0],
[s, c, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
@torch.no_grad()
def batch_random_rotation_translation(b, t, device=None):
m = np.random.normal(size=[b, 3, 3])
m[:, 1] = np.cross(m[:, 0], m[:, 2])
m[:, 2] = np.cross(m[:, 0], m[:, 1])
m = m / np.linalg.norm(m, axis=2, keepdims=True)
m = np.pad(m, [[0, 0], [0, 1], [0, 1]], mode='constant')
m[:, 3, 3] = 1.0
m[:, :3, 3] = np.random.uniform(-t, t, size=[b, 3])
return torch.tensor(m, dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation_translation(t, device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return torch.tensor(m, dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation(device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.array([0,0,0]).astype(np.float32)
return torch.tensor(m, dtype=torch.float32, device=device)
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def lr_schedule(iter, warmup_iter, scheduler_decay):
if iter < warmup_iter:
return iter / warmup_iter
return max(0.0, 10 ** (
-(iter - warmup_iter) * scheduler_decay))
def trans_depth(depth):
depth = depth[0].detach().cpu().numpy()
valid = depth > 0
depth[valid] -= depth[valid].min()
depth[valid] = ((depth[valid] / depth[valid].max()) * 255)
return depth.astype('uint8')
def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None):
assert isinstance(input, torch.Tensor)
if posinf is None:
posinf = torch.finfo(input.dtype).max
if neginf is None:
neginf = torch.finfo(input.dtype).min
assert nan == 0
return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
def load_item(filepath):
with open(filepath, 'r') as f:
items = [name.strip() for name in f.readlines()]
return set(items)
def load_prompt(filepath):
uuid2prompt = {}
with open(filepath, 'r') as f:
for line in f.readlines():
list_line = line.split(',')
uuid2prompt[list_line[0]] = ','.join(list_line[1:]).strip()
return uuid2prompt
def resize_and_center_image(image_tensor, scale=0.95, c = 0, shift = 0, rgb=False, aug_shift = 0):
if scale == 1:
return image_tensor
B, C, H, W = image_tensor.shape
new_H, new_W = int(H * scale), int(W * scale)
resized_image = torch.nn.functional.interpolate(image_tensor, size=(new_H, new_W), mode='bilinear', align_corners=False).squeeze(0)
background = torch.zeros_like(image_tensor) + c
start_y, start_x = (H - new_H) // 2, (W - new_W) // 2
if shift == 0:
background[:, :, start_y:start_y + new_H, start_x:start_x + new_W] = resized_image
else:
for i in range(B):
randx = random.randint(-shift, shift)
randy = random.randint(-shift, shift)
if rgb == True:
if i == 0 or i==2 or i==4:
randx = 0
randy = 0
background[i, :, start_y+randy:start_y + new_H+randy, start_x+randx:start_x + new_W+randx] = resized_image[i]
if aug_shift == 0:
return background
for i in range(B):
for j in range(C):
background[i, j, :, :] += (random.random() - 0.5)*2 * aug_shift / 255
return background
def get_tri(triview_color, dim = 1, blender=True, c = 0, scale=0.95, shift = 0, fix = False, rgb=False, aug_shift = 0):
# triview_color: [6,C,H,W]
# rgb is useful when shift is not 0
triview_color = resize_and_center_image(triview_color, scale=scale, c = c, shift=shift,rgb=rgb, aug_shift = aug_shift)
if blender is False:
triview_color0 = torch.rot90(triview_color[0],k=2,dims=[1,2])
triview_color1 = torch.rot90(triview_color[4],k=1,dims=[1,2]).flip(2).flip(1)
triview_color2 = torch.rot90(triview_color[5],k=1,dims=[1,2]).flip(2)
triview_color3 = torch.rot90(triview_color[3],k=2,dims=[1,2]).flip(2)
triview_color4 = torch.rot90(triview_color[1],k=3,dims=[1,2]).flip(1)
triview_color5 = torch.rot90(triview_color[2],k=3,dims=[1,2]).flip(1).flip(2)
else:
triview_color0 = torch.rot90(triview_color[2],k=2,dims=[1,2])
triview_color1 = torch.rot90(triview_color[4],k=0,dims=[1,2]).flip(2).flip(1)
triview_color2 = torch.rot90(torch.rot90(triview_color[0],k=3,dims=[1,2]).flip(2), k=2,dims=[1,2])
triview_color3 = torch.rot90(torch.rot90(triview_color[5],k=2,dims=[1,2]).flip(2), k=2,dims=[1,2])
triview_color4 = torch.rot90(triview_color[1],k=2,dims=[1,2]).flip(1).flip(1).flip(2)
triview_color5 = torch.rot90(triview_color[3],k=1,dims=[1,2]).flip(1).flip(2)
if fix == True:
triview_color0[1] = triview_color0[1] * 0
triview_color0[2] = triview_color0[2] * 0
triview_color3[1] = triview_color3[1] * 0
triview_color3[2] = triview_color3[2] * 0
triview_color1[0] = triview_color1[0] * 0
triview_color1[1] = triview_color1[1] * 0
triview_color4[0] = triview_color4[0] * 0
triview_color4[1] = triview_color4[1] * 0
triview_color2[0] = triview_color2[0] * 0
triview_color2[2] = triview_color2[2] * 0
triview_color5[0] = triview_color5[0] * 0
triview_color5[2] = triview_color5[2] * 0
color_tensor1_gt = torch.cat((triview_color0, triview_color1, triview_color2), dim=2)
color_tensor2_gt = torch.cat((triview_color3, triview_color4, triview_color5), dim=2)
color_tensor_gt = torch.cat((color_tensor1_gt, color_tensor2_gt), dim = dim)
return color_tensor_gt
|