Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,694 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import blenderproc as bproc
import argparse, sys, os, math, re
import bpy
from glob import glob
from mathutils import Vector, Matrix
import random
import sys
import time
import urllib.request
import uuid
from typing import Tuple
import numpy as np
from blenderproc.python.types.MeshObjectUtility import MeshObject, convert_to_meshes
import pdb
from math import radians
import cv2
from scipy.spatial.transform import Rotation as R
import PIL.Image as Image
parser = argparse.ArgumentParser(description='Renders given obj file by rotation a camera around it.')
parser.add_argument('--view', type=int, default=0,
help='the index of view to be rendered')
parser.add_argument(
"--object_path",
type=str,
default='/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/glbs/000-148/2651a32fb4dc441dab773b8b534b851f.glb',
required=True,
help="Path to the object file",
)
parser.add_argument('--output_folder', type=str, default='output',
help='The path the output will be dumped to.')
# parser.add_argument('--scale', type=float, default=1,
# help='Scaling factor applied to model. Depends on size of mesh.')
# parser.add_argument('--depth_scale', type=float, default=0.1,
# help='Scaling that is applied to depth. Depends on size of mesh. Try out various values until you get a good result. Ignored if format is OPEN_EXR.')
# parser.add_argument('--format', type=str, default='PNG',
# help='Format of files generated. Either PNG or OPEN_EXR')
parser.add_argument('--resolution', type=int, default=512,
help='Resolution of the images.')
parser.add_argument('--ortho_scale', type=float, default=1.25,
help='ortho rendering usage; how large the object is')
parser.add_argument('--object_uid', type=str, default=None)
parser.add_argument('--random_pose', action='store_true',
help='whether randomly rotate the poses to be rendered')
parser.add_argument('--reset_object_euler', action='store_true',
help='set object rotation euler to 0')
# argv = sys.argv[sys.argv.index("--") + 1:]
args = parser.parse_args()
def scene_bbox(single_obj=None, ignore_matrix=False):
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def scene_root_objects():
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def normalize_scene():
bbox_min, bbox_max = scene_bbox()
dxyz = bbox_max - bbox_min
dist = np.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
# print("dxyz: ",dxyz, "dist: ", dist)
# scale = 1 / max(bbox_max - bbox_min)
scale = 1. / dist
for obj in scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
return scale, offset
def get_a_camera_location(loc):
location = Vector([loc[0],loc[1],loc[2]])
direction = - location
rot_quat = direction.to_track_quat('-Z', 'Y')
rotation_euler = rot_quat.to_euler()
return location, rotation_euler
# function from https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
def get_3x4_RT_matrix_from_blender(cam):
# bcam stands for blender camera
# R_bcam2cv = Matrix(
# ((1, 0, 0),
# (0, 1, 0),
# (0, 0, 1)))
# Transpose since the rotation is object rotation,
# and we want coordinate rotation
# R_world2bcam = cam.rotation_euler.to_matrix().transposed()
# T_world2bcam = -1*R_world2bcam @ location
#
# Use matrix_world instead to account for all constraints
location, rotation = cam.matrix_world.decompose()[0:2]
R_world2bcam = rotation.to_matrix().transposed()
# Convert camera location to translation vector used in coordinate changes
# T_world2bcam = -1*R_world2bcam @ cam.location
# Use location from matrix_world to account for constraints:
T_world2bcam = -1*R_world2bcam @ location
# # Build the coordinate transform matrix from world to computer vision camera
# R_world2cv = R_bcam2cv@R_world2bcam
# T_world2cv = R_bcam2cv@T_world2bcam
# put into 3x4 matrix
RT = Matrix((
R_world2bcam[0][:] + (T_world2bcam[0],),
R_world2bcam[1][:] + (T_world2bcam[1],),
R_world2bcam[2][:] + (T_world2bcam[2],)
))
return RT
def get_calibration_matrix_K_from_blender(mode='simple'):
scene = bpy.context.scene
scale = scene.render.resolution_percentage / 100
width = scene.render.resolution_x * scale # px
height = scene.render.resolution_y * scale # px
camdata = scene.camera.data
if mode == 'simple':
aspect_ratio = width / height
K = np.zeros((3,3), dtype=np.float32)
K[0][0] = width / 2 / np.tan(camdata.angle / 2)
K[1][1] = height / 2. / np.tan(camdata.angle / 2) * aspect_ratio
K[0][2] = width / 2.
K[1][2] = height / 2.
K[2][2] = 1.
K.transpose()
if mode == 'complete':
focal = camdata.lens # mm
sensor_width = camdata.sensor_width # mm
sensor_height = camdata.sensor_height # mm
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if (camdata.sensor_fit == 'VERTICAL'):
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = width / sensor_width / pixel_aspect_ratio
s_v = height / sensor_height
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
s_u = width / sensor_width
s_v = height * pixel_aspect_ratio / sensor_height
# parameters of intrinsic calibration matrix K
alpha_u = focal * s_u
alpha_v = focal * s_v
u_0 = width / 2
v_0 = height / 2
skew = 0 # only use rectangular pixels
K = np.array([
[alpha_u, skew, u_0],
[ 0, alpha_v, v_0],
[ 0, 0, 1]
], dtype=np.float32)
return K
# load the glb model
def load_object(object_path: str) -> None:
"""Loads a glb model into the scene."""
if object_path.endswith(".glb"):
bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=False)
elif object_path.endswith(".fbx"):
bpy.ops.import_scene.fbx(filepath=object_path)
elif object_path.endswith(".obj"):
bpy.ops.import_scene.obj(filepath=object_path)
elif object_path.endswith(".ply"):
bpy.ops.import_mesh.ply(filepath=object_path)
else:
raise ValueError(f"Unsupported file type: {object_path}")
def reset_scene() -> None:
"""Resets the scene to a clean state."""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
bproc.init()
world_tree = bpy.context.scene.world.node_tree
back_node = world_tree.nodes['Background']
env_light = 0.4
back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0])
back_node.inputs['Strength'].default_value = 0.5
# Place camera
bpy.data.cameras[0].type = "ORTHO"
bpy.data.cameras[0].ortho_scale = args.ortho_scale
# cam = bpy.context.scene.objects['Camera']
# cam.data.type = "ORTHO"
# cam.data.ortho_scale = args.ortho_scale
print("ortho scale ", args.ortho_scale)
# cam_constraint = cam.constraints.new(type='TRACK_TO')
# cam_constraint.track_axis = 'TRACK_NEGATIVE_Z'
# cam_constraint.up_axis = 'UP_Y'
#Make light just directional, disable shadows.
light = bproc.types.Light(name='Light', light_type='SUN')
light = bpy.data.lights['Light']
light.use_shadow = False
# Possibly disable specular shading:
light.specular_factor = 1.0
light.energy = 5.0
#Add another light source so stuff facing away from light is not completely dark
light2 = bproc.types.Light(name='Light2', light_type='SUN')
light2 = bpy.data.lights['Light2']
light2.use_shadow = False
light2.specular_factor = 1.0
light2.energy = 3 #0.015
bpy.data.objects['Light2'].rotation_euler = bpy.data.objects['Light'].rotation_euler
bpy.data.objects['Light2'].rotation_euler[0] += 180
#Add another light source so stuff facing away from light is not completely dark
light3 = bproc.types.Light(name='light3', light_type='SUN')
light3 = bpy.data.lights['light3']
light3.use_shadow = False
light3.specular_factor = 1.0
light3.energy = 3 #0.015
bpy.data.objects['light3'].rotation_euler = bpy.data.objects['Light'].rotation_euler
bpy.data.objects['light3'].rotation_euler[0] += 90
#Add another light source so stuff facing away from light is not completely dark
light4 = bproc.types.Light(name='light4', light_type='SUN')
light4 = bpy.data.lights['light4']
light4.use_shadow = False
light4.specular_factor = 1.0
light4.energy = 3 #0.015
bpy.data.objects['light4'].rotation_euler = bpy.data.objects['Light'].rotation_euler
bpy.data.objects['light4'].rotation_euler[0] += -90
# Get all camera objects in the scene
def get_camera_objects():
cameras = [obj for obj in bpy.context.scene.objects if obj.type == 'CAMERA']
return cameras
VIEWS = ["_front", "_back", "_right", "_left", "_front_right", "_front_left", "_back_right", "_back_left", "_top"]
EXTRA_VIEWS = ["_front_right_top", "_front_left_top", "_back_right_top", "_back_left_top", ]
def save_images(object_file: str, viewidx: int) -> None:
global VIEWS
global EXTRA_VIEWS
reset_scene()
# load the object
load_object(object_file)
if args.object_uid is None:
object_uid = os.path.basename(object_file).split(".")[0]
else:
object_uid = args.object_uid
args.output_folder = os.path.join(args.output_folder, object_uid[:2])
os.makedirs(os.path.join(args.output_folder, object_uid), exist_ok=True)
if args.reset_object_euler:
for obj in scene_root_objects():
obj.rotation_euler[0] = 0 # don't know why
bpy.ops.object.select_all(action="DESELECT")
scale , offset = normalize_scene()
Scale_path = os.path.join(args.output_folder, object_uid, "scale_offset_matrix.txt")
np.savetxt(Scale_path, [scale]+list(offset)+[args.ortho_scale])
try:
# some objects' normals are affected by textures
mesh_objects = convert_to_meshes([obj for obj in scene_meshes()])
for obj in mesh_objects:
print("removing invalid normals")
for mat in obj.get_materials():
mat.set_principled_shader_value("Normal", [1,1,1])
except:
print("don't know why")
cam_empty = bpy.data.objects.new("Empty", None)
cam_empty.location = (0, 0, 0)
bpy.context.scene.collection.objects.link(cam_empty)
radius = 2.0
camera_locations = [
np.array([0,-radius,0]), # camera_front
np.array([0,radius,0]), # camera back
np.array([radius,0,0]), # camera right
np.array([-radius,0,0]), # camera left
np.array([radius,-radius,0]) / np.sqrt(2.) , # camera_front_right
np.array([-radius,-radius,0]) / np.sqrt(2.), # camera front left
np.array([radius,radius,0]) / np.sqrt(2.), # camera back right
np.array([-radius,radius,0]) / np.sqrt(2.), # camera back left
np.array([0,0,radius]), # camera top
np.array([radius,-radius,radius]) / np.sqrt(3.) , # camera_front_right_top
np.array([-radius,-radius,radius]) / np.sqrt(3.), # camera front left top
np.array([radius,radius,radius]) / np.sqrt(3.), # camera back right top
np.array([-radius,radius,radius]) / np.sqrt(3.), # camera back left top
]
for location in camera_locations:
_location,_rotation = get_a_camera_location(location)
bpy.ops.object.camera_add(enter_editmode=False, align='VIEW', location=_location, rotation=_rotation,scale=(1, 1, 1))
_camera = bpy.context.selected_objects[0]
_constraint = _camera.constraints.new(type='TRACK_TO')
_constraint.track_axis = 'TRACK_NEGATIVE_Z'
_constraint.up_axis = 'UP_Y'
_camera.parent = cam_empty
_constraint.target = cam_empty
_constraint.owner_space = 'LOCAL'
bpy.context.view_layer.update()
bpy.ops.object.select_all(action='DESELECT')
cam_empty.select_set(True)
if args.random_pose :
print("random poses")
delta_z = np.random.uniform(-60, 60, 1) # left right rotate
delta_x = np.random.uniform(-15, 30, 1) # up and down rotate
delta_y = 0
else:
print("fix poses")
delta_z = 0
delta_x = 0
delta_y = 0
bpy.ops.transform.rotate(value=math.radians(delta_z),orient_axis='Z',orient_type='VIEW')
bpy.ops.transform.rotate(value=math.radians(delta_y),orient_axis='Y',orient_type='VIEW')
bpy.ops.transform.rotate(value=math.radians(delta_x),orient_axis='X',orient_type='VIEW')
bpy.ops.object.select_all(action='DESELECT')
VIEWS = VIEWS + EXTRA_VIEWS
for j in range(len(VIEWS)):
view = f"{viewidx:03d}"+ VIEWS[j]
# set camera
cam = bpy.data.objects[f'Camera.{j+1:03d}']
location, rotation = cam.matrix_world.decompose()[0:2]
print(j, rotation)
cam_pose = bproc.math.build_transformation_mat(location, rotation.to_matrix())
bproc.camera.set_resolution(args.resolution, args.resolution)
bproc.camera.add_camera_pose(cam_pose)
# save camera RT matrix
RT = get_3x4_RT_matrix_from_blender(cam)
# print(np.linalg.inv(cam_pose)) # the same
# print(RT)
# idx = 4*i+j
RT_path = os.path.join(args.output_folder, object_uid, view+"_RT.txt")
K_path = os.path.join(args.output_folder, object_uid, view+"_K.txt")
# NT_path = os.path.join(args.output_folder, object_uid, f"{i:03d}_NT.npy")
K = get_calibration_matrix_K_from_blender()
np.savetxt(RT_path, RT)
# np.savetxt(K_path, K)
# activate normal and depth rendering
# must be here
bproc.renderer.enable_normals_output()
bproc.renderer.enable_depth_output(activate_antialiasing=False)
# Render the scene
data = bproc.renderer.render()
for j in range(len(VIEWS)):
index = j
view = f"{viewidx:03d}"+ VIEWS[j]
# Nomralizes depth maps
depth_map = data['depth'][index]
depth_max = np.max(depth_map)
valid_mask = depth_map!=depth_max
invalid_mask = depth_map==depth_max
depth_map[invalid_mask] = 0
depth_map = np.uint16((depth_map / 10) * 65535)
normal_map = data['normals'][index]*255
valid_mask = valid_mask.astype(np.int8)*255
color_map = data['colors'][index]
color_map = np.concatenate([color_map, valid_mask[:, :, None]], axis=-1)
normal_map = np.concatenate([normal_map, valid_mask[:, :, None]], axis=-1)
Image.fromarray(color_map.astype(np.uint8)).save(
'{}/{}/rgb_{}.webp'.format(args.output_folder, object_uid, view), "webp", quality=100)
Image.fromarray(normal_map.astype(np.uint8)).save(
'{}/{}/normals_{}.webp'.format(args.output_folder, object_uid, view), "webp", quality=100)
# cv2.imwrite('{}/{}/rgb_{}.png'.format(args.output_folder, object_uid, view), color_map)
# cv2.imwrite('{}/{}/depth_{}.png'.format(args.output_folder,object_uid, view), depth_map)
# cv2.imwrite('{}/{}/normals_{}.png'.format(args.output_folder,object_uid, view), normal_map)
# cv2.imwrite('{}/{}/mask_{}.png'.format(args.output_folder,object_uid, view), valid_mask)
def download_object(object_url: str) -> str:
"""Download the object and return the path."""
# uid = uuid.uuid4()
uid = object_url.split("/")[-1].split(".")[0]
tmp_local_path = os.path.join("tmp-objects", f"{uid}.glb" + ".tmp")
local_path = os.path.join("tmp-objects", f"{uid}.glb")
# wget the file and put it in local_path
os.makedirs(os.path.dirname(tmp_local_path), exist_ok=True)
urllib.request.urlretrieve(object_url, tmp_local_path)
os.rename(tmp_local_path, local_path)
# get the absolute path
local_path = os.path.abspath(local_path)
return local_path
if __name__ == "__main__":
# try:
start_i = time.time()
if args.object_path.startswith("http"):
local_path = download_object(args.object_path)
else:
local_path = args.object_path
if not os.path.exists(local_path):
print("object does not exists")
else:
try:
save_images(local_path, args.view)
except Exception as e:
print("Failed to render", args.object_path)
print(e)
end_i = time.time()
print("Finished", local_path, "in", end_i - start_i, "seconds")
# delete the object if it was downloaded
if args.object_path.startswith("http"):
os.remove(local_path)
# except Exception as e:
# print("Failed to render", args.object_path)
# print(e)
|