File size: 6,357 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# multiprocessing render
import json
import multiprocessing
import subprocess
from dataclasses import dataclass
from typing import Optional
import os

import boto3

import argparse

parser = argparse.ArgumentParser(description='distributed rendering')

parser.add_argument('--workers_per_gpu', type=int,
                    help='number of workers per gpu.')
parser.add_argument('--input_models_path', type=str,
                    help='Path to a json file containing a list of 3D object files.')
parser.add_argument('--upload_to_s3', type=bool, default=False,
                    help='Whether to upload the rendered images to S3.')
parser.add_argument('--log_to_wandb', type=bool, default=False,
                    help='Whether to log the progress to wandb.')
parser.add_argument('--num_gpus', type=int, default=-1,
                    help='number of gpus to use. -1 means all available gpus.')
parser.add_argument('--gpu_list',nargs='+', type=int, 
                    help='the avalaible gpus')

parser.add_argument('--mode', type=str, default='render', 
                choices=['render_ortho', 'render_persp'],
                    help='use orthogonal camera or perspective camera')

parser.add_argument('--start_i', type=int, default=0,
                    help='the index of first object to be rendered.')

parser.add_argument('--end_i', type=int, default=-1,
                    help='the index of the last object to be rendered.')

parser.add_argument('--objaverse_root', type=str, default='/ghome/l5/xxlong/.objaverse/hf-objaverse-v1',
                    help='Path to a json file containing a list of 3D object files.')

parser.add_argument('--save_folder', type=str, default=None,
                    help='Path to a json file containing a list of 3D object files.')

parser.add_argument('--blender_install_path', type=str, default=None,
                    help='blender path.')

parser.add_argument('--view_idx', type=int, default=2,
                    help='the number of render views.')

parser.add_argument('--ortho_scale', type=float, default=1.25,
                    help='ortho rendering usage; how large the object is')

parser.add_argument('--random_pose', action='store_true',
                    help='whether randomly rotate the poses to be rendered')

args = parser.parse_args()


view_idx = args.view_idx

VIEWS = ["front", "back", "right", "left", "front_right", "front_left", "back_right", "back_left"]

def check_task_finish(render_dir, view_index):
    files_type = ['rgb', 'normals']
    flag = True
    view_index = "%03d" % view_index
    if os.path.exists(render_dir):
        for t in files_type:
            for face in VIEWS:
                fpath = os.path.join(render_dir, f'{t}_{view_index}_{face}.webp')
                # print(fpath)
                if not os.path.exists(fpath):
                    flag = False
    else:
        flag = False

    return flag

def worker(
    queue: multiprocessing.JoinableQueue,
    count: multiprocessing.Value,
    gpu: int,
    s3: Optional[boto3.client],
) -> None:
    while True:
        item = queue.get()
        if item is None:
            break

        view_path = os.path.join(args.save_folder, item.split('/')[-1][:2], item.split('/')[-1][:-4])
        print(view_path)
        if  'render' in args.mode:
            if check_task_finish(view_path, view_idx):
                queue.task_done()
                print('========', item, 'rendered', '========')
                
                continue
            else:
                os.makedirs(view_path, exist_ok = True)

        # Perform some operation on the item
        print(item, gpu)

        if args.mode == 'render_ortho':
            command = (
                f" CUDA_VISIBLE_DEVICES={gpu} "
                f" blenderproc run --blender-install-path {args.blender_install_path} blenderProc_ortho.py"
                f" --object_path {item} --view {view_idx}"
                f" --output_folder {args.save_folder}"
                f" --ortho_scale {args.ortho_scale} "
            )
            if args.random_pose:
                print("random pose to render")
                command += f" --random_pose"
        elif args.mode == 'render_persp':
            command = (
                f" CUDA_VISIBLE_DEVICES={gpu} "
                f" blenderproc run --blender-install-path {args.blender_install_path} blenderProc_persp.py"
                f" --object_path {item} --view {view_idx}"
                f" --output_folder {args.save_folder}"
            )
            if args.random_pose:
                print("random pose to render")
                command += f" --random_pose"
    
        print(command)
        subprocess.run(command, shell=True)

        with count.get_lock():
            count.value += 1

        queue.task_done()


if __name__ == "__main__":
    # args = tyro.cli(Args)

    s3 = boto3.client("s3") if args.upload_to_s3 else None
    queue = multiprocessing.JoinableQueue()
    count = multiprocessing.Value("i", 0)

    # Start worker processes on each of the GPUs
    for gpu_i in range(args.num_gpus):
        for worker_i in range(args.workers_per_gpu):
            worker_i = gpu_i * args.workers_per_gpu + worker_i
            process = multiprocessing.Process(
                target=worker, args=(queue, count, args.gpu_list[gpu_i], s3)
            )
            process.daemon = True
            process.start()
        
    # Add items to the queue
    if args.input_models_path is not None:
        with open(args.input_models_path, "r") as f:
            model_paths = json.load(f)

    args.end_i = len(model_paths) if args.end_i > len(model_paths) else args.end_i

    for item in model_paths[args.start_i:args.end_i]:

        if os.path.exists(os.path.join(args.objaverse_root, os.path.basename(item))):
            obj_path = os.path.join(args.objaverse_root, os.path.basename(item))
        elif os.path.exists(os.path.join(args.objaverse_root, item)):
            obj_path = os.path.join(args.objaverse_root, item)
        else:
            obj_path = os.path.join(args.objaverse_root, item[:2], item+".glb")
        queue.put(obj_path)

    # Wait for all tasks to be completed
    queue.join()

    # Add sentinels to the queue to stop the worker processes
    for i in range(args.num_gpus * args.workers_per_gpu):
        queue.put(None)