Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,580 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
from dataclasses import dataclass, field
import pytorch_lightning as pl
import torch.nn.functional as F
import craftsman
from craftsman.utils.base import (
Updateable,
update_end_if_possible,
update_if_possible,
)
from craftsman.utils.scheduler import parse_optimizer, parse_scheduler
from craftsman.utils.config import parse_structured
from craftsman.utils.misc import C, cleanup, get_device, load_module_weights
from craftsman.utils.saving import SaverMixin
from craftsman.utils.typing import *
class BaseSystem(pl.LightningModule, Updateable, SaverMixin):
@dataclass
class Config:
loggers: dict = field(default_factory=dict)
loss: dict = field(default_factory=dict)
optimizer: dict = field(default_factory=dict)
scheduler: Optional[dict] = None
weights: Optional[str] = None
weights_ignore_modules: Optional[List[str]] = None
cleanup_after_validation_step: bool = False
cleanup_after_test_step: bool = False
pretrained_model_path: Optional[str] = None
strict_load: bool = True
cfg: Config
def __init__(self, cfg, resumed=False) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self._save_dir: Optional[str] = None
self._resumed: bool = resumed
self._resumed_eval: bool = False
self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0}
if "loggers" in cfg:
self.create_loggers(cfg.loggers)
self.configure()
if self.cfg.weights is not None:
self.load_weights(self.cfg.weights, self.cfg.weights_ignore_modules)
self.post_configure()
def load_weights(self, weights: str, ignore_modules: Optional[List[str]] = None):
state_dict, epoch, global_step = load_module_weights(
weights, ignore_modules=ignore_modules, map_location="cpu"
)
self.load_state_dict(state_dict, strict=False)
# restore step-dependent states
self.do_update_step(epoch, global_step, on_load_weights=True)
def set_resume_status(self, current_epoch: int, global_step: int):
# restore correct epoch and global step in eval
self._resumed_eval = True
self._resumed_eval_status["current_epoch"] = current_epoch
self._resumed_eval_status["global_step"] = global_step
@property
def resumed(self):
# whether from resumed checkpoint
return self._resumed
@property
def true_global_step(self):
if self._resumed_eval:
return self._resumed_eval_status["global_step"]
else:
return self.global_step
@property
def true_current_epoch(self):
if self._resumed_eval:
return self._resumed_eval_status["current_epoch"]
else:
return self.current_epoch
def configure(self) -> None:
pass
def post_configure(self) -> None:
"""
executed after weights are loaded
"""
pass
def C(self, value: Any) -> float:
return C(value, self.true_current_epoch, self.true_global_step)
def configure_optimizers(self):
optim = parse_optimizer(self.cfg.optimizer, self)
ret = {
"optimizer": optim,
}
if self.cfg.scheduler is not None:
ret.update(
{
"lr_scheduler": parse_scheduler(self.cfg.scheduler, optim),
}
)
return ret
def training_step(self, batch, batch_idx):
raise NotImplementedError
def validation_step(self, batch, batch_idx):
raise NotImplementedError
def on_train_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.train_dataloader.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
def on_validation_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.val_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_validation_step:
# cleanup to save vram
cleanup()
def on_validation_epoch_end(self):
raise NotImplementedError
def test_step(self, batch, batch_idx):
raise NotImplementedError
def on_test_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.test_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def on_test_epoch_end(self):
pass
def predict_step(self, batch, batch_idx):
raise NotImplementedError
def on_predict_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.predict_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def on_predict_epoch_end(self):
pass
def preprocess_data(self, batch, stage):
pass
"""
Implementing on_after_batch_transfer of DataModule does the same.
But on_after_batch_transfer does not support DP.
"""
def on_train_batch_start(self, batch, batch_idx, unused=0):
self.preprocess_data(batch, "train")
self.dataset = self.trainer.train_dataloader.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "validation")
self.dataset = self.trainer.val_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "test")
self.dataset = self.trainer.test_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "predict")
self.dataset = self.trainer.predict_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
pass
def on_before_optimizer_step(self, optimizer):
"""
# some gradient-related debugging goes here, example:
from lightning.pytorch.utilities import grad_norm
norms = grad_norm(self.geometry, norm_type=2)
print(norms)
"""
pass
|