Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,180 Bytes
0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 8133633 0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
from dataclasses import dataclass
import math
import torch
import numpy as np
import random
import torch.nn as nn
from einops import repeat, rearrange
import craftsman
from craftsman.models.transformers.perceiver_1d import Perceiver
from craftsman.models.transformers.attention import ResidualCrossAttentionBlock
from craftsman.utils.checkpoint import checkpoint
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
from craftsman.utils.misc import get_world_size
from craftsman.utils.ops import generate_dense_grid_points
###################### Utils
VALID_EMBED_TYPES = ["identity", "fourier", "learned_fourier", "siren"]
class FourierEmbedder(nn.Module):
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class LearnedFourierEmbedder(nn.Module):
def __init__(self, input_dim, dim):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
per_channel_dim = half_dim // input_dim
self.weights = nn.Parameter(torch.randn(per_channel_dim))
self.out_dim = self.get_dims(input_dim)
def forward(self, x):
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
return fouriered
def get_dims(self, input_dim):
return input_dim * (self.weights.shape[0] * 2 + 1)
class Sine(nn.Module):
def __init__(self, w0 = 1.):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
class Siren(nn.Module):
def __init__(
self,
in_dim,
out_dim,
w0 = 1.,
c = 6.,
is_first = False,
use_bias = True,
activation = None,
dropout = 0.
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.is_first = is_first
weight = torch.zeros(out_dim, in_dim)
bias = torch.zeros(out_dim) if use_bias else None
self.init_(weight, bias, c = c, w0 = w0)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias) if use_bias else None
self.activation = Sine(w0) if activation is None else activation
self.dropout = nn.Dropout(dropout)
def init_(self, weight, bias, c, w0):
dim = self.in_dim
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
weight.uniform_(-w_std, w_std)
if bias is not None:
bias.uniform_(-w_std, w_std)
def forward(self, x):
out = F.linear(x, self.weight, self.bias)
out = self.activation(out)
out = self.dropout(out)
return out
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True):
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
return nn.Identity(), input_dim
elif embed_type == "fourier":
embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
elif embed_type == "learned_fourier":
embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs)
elif embed_type == "siren":
embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim)
else:
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
return embedder_obj
###################### AutoEncoder
class AutoEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
num_latents: int = 256
embed_dim: int = 64
width: int = 768
cfg: Config
def configure(self) -> None:
super().configure()
def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
raise NotImplementedError
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
posterior = None
if self.cfg.embed_dim > 0:
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
kl_embed = posterior.sample()
else:
kl_embed = posterior.mode()
else:
kl_embed = latents
return kl_embed, posterior
def forward(self,
surface: torch.FloatTensor,
queries: torch.FloatTensor,
sample_posterior: bool = True):
shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)
latents = self.decode(kl_embed) # [B, num_latents, width]
logits = self.query(queries, latents) # [B,]
return shape_latents, latents, posterior, logits
def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
@torch.no_grad()
def extract_geometry(self,
latents: torch.FloatTensor,
extract_mesh_func: str = "mc",
bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05),
octree_depth: int = 8,
num_chunks: int = 10000,
):
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_depth=octree_depth,
indexing="ij"
)
xyz_samples = torch.FloatTensor(xyz_samples)
batch_size = latents.shape[0]
batch_logits = []
for start in range(0, xyz_samples.shape[0], num_chunks):
queries = xyz_samples[start: start + num_chunks, :].to(latents)
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = self.query(batch_queries, latents)
batch_logits.append(logits.cpu())
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy()
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
if extract_mesh_func == "mc":
from skimage import measure
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
# vertices, faces = mcubes.marching_cubes(grid_logits[i], 0)
vertices = vertices / grid_size * bbox_size + bbox_min
faces = faces[:, [2, 1, 0]]
elif extract_mesh_func == "diffmc":
from diso import DiffMC
diffmc = DiffMC(dtype=torch.float32).to(latents.device)
vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
vertices = vertices * 2 - 1
vertices = vertices.cpu().numpy()
faces = faces.cpu().numpy()
elif extract_mesh_func == "diffdmc":
from diso import DiffDMC
diffmc = DiffDMC(dtype=torch.float32).to(latents.device)
vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
vertices = vertices * 2 - 1
vertices = vertices.cpu().numpy()
faces = faces.cpu().numpy()
else:
raise NotImplementedError(f"{extract_mesh_func} not implement")
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces.astype(np.int64))))
has_surface[i] = True
except:
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
def sample(self):
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=dims)
def nll(self, sample, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
class PerceiverCrossAttentionEncoder(nn.Module):
def __init__(self,
use_downsample: bool,
num_latents: int,
embedder: FourierEmbedder,
point_feats: int,
embed_point_feats: bool,
width: int,
heads: int,
layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_ln_post: bool = False,
use_flash: bool = False,
use_checkpoint: bool = False,
use_multi_reso: bool = False,
resolutions: list = [],
sampling_prob: list = []):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
self.use_downsample = use_downsample
self.embed_point_feats = embed_point_feats
self.use_multi_reso = use_multi_reso
self.resolutions = resolutions
self.sampling_prob = sampling_prob
if not self.use_downsample:
self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)
self.embedder = embedder
if self.embed_point_feats:
self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
else:
self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
)
self.self_attn = Perceiver(
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
use_checkpoint=False
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def _forward(self, pc, feats):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
"""
bs, N, D = pc.shape
data = self.embedder(pc)
if feats is not None:
if self.embed_point_feats:
feats = self.embedder(feats)
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
if self.use_multi_reso:
# number = 8192
resolution = random.choice(self.resolutions, size=1, p=self.sampling_prob)[0]
if resolution != N:
flattened = pc.view(bs*N, D) # bs*N, 64. 103,4096,3 -> 421888,3
batch = torch.arange(bs).to(pc.device) # 103
batch = torch.repeat_interleave(batch, N) # bs*N. 421888
pos = flattened
ratio = 1.0 * resolution / N # 0.0625
idx = fps(pos, batch, ratio=ratio) #26368
pc = pc.view(bs*N, -1)[idx].view(bs, -1, D)
bs,N,D=feats.shape
flattened1 = feats.view(bs*N, D)
feats= flattened1.view(bs*N, -1)[idx].view(bs, -1, D)
bs, N, D = pc.shape
if self.use_downsample:
###### fps
from torch_cluster import fps
flattened = pc.view(bs*N, D) # bs*N, 64
batch = torch.arange(bs).to(pc.device)
batch = torch.repeat_interleave(batch, N) # bs*N
pos = flattened
ratio = 1.0 * self.num_latents / N
idx = fps(pos, batch, ratio=ratio)
query = data.view(bs*N, -1)[idx].view(bs, -1, data.shape[-1])
else:
query = self.query
query = repeat(query, "m c -> b m c", b=bs)
latents = self.cross_attn(query, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
dict
"""
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
class PerceiverCrossAttentionDecoder(nn.Module):
def __init__(self,
num_latents: int,
out_dim: int,
embedder: FourierEmbedder,
width: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_flash: bool = False,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.embedder = embedder
self.query_proj = nn.Linear(self.embedder.out_dim, width)
self.cross_attn_decoder = ResidualCrossAttentionBlock(
n_data=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash
)
self.ln_post = nn.LayerNorm(width)
self.output_proj = nn.Linear(width, out_dim)
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
queries = self.query_proj(self.embedder(queries))
x = self.cross_attn_decoder(queries, latents)
x = self.ln_post(x)
x = self.output_proj(x)
return x
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
@craftsman.register("michelangelo-autoencoder")
class MichelangeloAutoencoder(AutoEncoder):
r"""
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
"""
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
n_samples: int = 4096
use_downsample: bool = False
downsample_ratio: float = 0.0625
num_latents: int = 256
point_feats: int = 0
embed_point_feats: bool = False
out_dim: int = 1
embed_dim: int = 64
embed_type: str = "fourier"
num_freqs: int = 8
include_pi: bool = True
width: int = 768
heads: int = 12
num_encoder_layers: int = 8
num_decoder_layers: int = 16
init_scale: float = 0.25
qkv_bias: bool = True
use_ln_post: bool = False
use_flash: bool = False
use_checkpoint: bool = True
use_multi_reso: Optional[bool] = False
resolutions: Optional[List[int]] = None
sampling_prob: Optional[List[float]] = None
cfg: Config
def configure(self) -> None:
super().configure()
self.embedder = get_embedder(embed_type=self.cfg.embed_type, num_freqs=self.cfg.num_freqs, include_pi=self.cfg.include_pi)
# encoder
self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
self.encoder = PerceiverCrossAttentionEncoder(
use_downsample=self.cfg.use_downsample,
embedder=self.embedder,
num_latents=self.cfg.num_latents,
point_feats=self.cfg.point_feats,
embed_point_feats=self.cfg.embed_point_feats,
width=self.cfg.width,
heads=self.cfg.heads,
layers=self.cfg.num_encoder_layers,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_ln_post=self.cfg.use_ln_post,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint,
use_multi_reso=self.cfg.use_multi_reso,
resolutions=self.cfg.resolutions,
sampling_prob=self.cfg.sampling_prob
)
if self.cfg.embed_dim > 0:
# VAE embed
self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
else:
self.latent_shape = (self.cfg.num_latents, self.cfg.width)
self.transformer = Perceiver(
n_ctx=self.cfg.num_latents,
width=self.cfg.width,
layers=self.cfg.num_decoder_layers,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
# decoder
self.decoder = PerceiverCrossAttentionDecoder(
embedder=self.embedder,
out_dim=self.cfg.out_dim,
num_latents=self.cfg.num_latents,
width=self.cfg.width,
heads=self.cfg.heads,
init_scale=self.cfg.init_scale,
qkv_bias=self.cfg.qkv_bias,
use_flash=self.cfg.use_flash,
use_checkpoint=self.cfg.use_checkpoint
)
if self.cfg.pretrained_model_name_or_path != "":
print(f"Loading pretrained model from {self.cfg.pretrained_model_name_or_path}")
pretrained_ckpt = torch.load(self.cfg.pretrained_model_name_or_path, map_location="cpu")
if 'state_dict' in pretrained_ckpt:
_pretrained_ckpt = {}
for k, v in pretrained_ckpt['state_dict'].items():
if k.startswith('shape_model.'):
_pretrained_ckpt[k.replace('shape_model.', '')] = v
pretrained_ckpt = _pretrained_ckpt
else:
_pretrained_ckpt = {}
for k, v in pretrained_ckpt.items():
if k.startswith('shape_model.'):
_pretrained_ckpt[k.replace('shape_model.', '')] = v
pretrained_ckpt = _pretrained_ckpt
self.load_state_dict(pretrained_ckpt, strict=False)
def encode(self,
surface: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
surface (torch.FloatTensor): [B, N, 3+C]
sample_posterior (bool):
Returns:
shape_latents (torch.FloatTensor): [B, num_latents, width]
kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
posterior (DiagonalGaussianDistribution or None):
"""
assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
bs, N, D = pc.shape
if N > self.cfg.n_samples:
# idx = furthest_point_sample(pc, self.cfg.n_samples) # (B, 3, npoint)
# pc = gather_operation(pc, idx).transpose(2, 1).contiguous()
# feats = gather_operation(feats, idx).transpose(2, 1).contiguous()
from torch_cluster import fps
flattened = pc.view(bs*N, D) # bs*N, 64
batch = torch.arange(bs).to(pc.device)
batch = torch.repeat_interleave(batch, N) # bs*N
pos = flattened
ratio = self.cfg.n_samples / N
idx = fps(pos, batch, ratio=ratio)
pc = pc.view(bs*N, -1)[idx].view(bs, -1, pc.shape[-1])
feats = feats.view(bs*N, -1)[idx].view(bs, -1, feats.shape[-1])
shape_latents = self.encoder(pc, feats) # B, num_latents, width
kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior) # B, num_latents, embed_dim
return shape_latents, kl_embed, posterior
def decode(self,
latents: torch.FloatTensor):
"""
Args:
latents (torch.FloatTensor): [B, embed_dim]
Returns:
latents (torch.FloatTensor): [B, embed_dim]
"""
latents = self.post_kl(latents) # [B, num_latents, embed_dim] -> [B, num_latents, width]
return self.transformer(latents)
def query(self,
queries: torch.FloatTensor,
latents: torch.FloatTensor):
"""
Args:
queries (torch.FloatTensor): [B, N, 3]
latents (torch.FloatTensor): [B, embed_dim]
Returns:
logits (torch.FloatTensor): [B, N], occupancy logits
"""
logits = self.decoder(queries, latents).squeeze(-1)
return logits
|