File size: 24,180 Bytes
0f079b2
 
 
 
8133633
 
0f079b2
 
 
 
 
 
 
 
 
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
 
0f079b2
 
 
 
 
 
 
8133633
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
 
 
8133633
0f079b2
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
 
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
from dataclasses import dataclass
import math

import torch
import numpy as np
import random
import torch.nn as nn
from einops import repeat, rearrange

import craftsman
from craftsman.models.transformers.perceiver_1d import Perceiver
from craftsman.models.transformers.attention import ResidualCrossAttentionBlock
from craftsman.utils.checkpoint import checkpoint
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
from craftsman.utils.misc import get_world_size
from craftsman.utils.ops import generate_dense_grid_points

###################### Utils
VALID_EMBED_TYPES = ["identity", "fourier", "learned_fourier", "siren"]

class FourierEmbedder(nn.Module):
    def __init__(self,
                 num_freqs: int = 6,
                 logspace: bool = True,
                 input_dim: int = 3,
                 include_input: bool = True,
                 include_pi: bool = True) -> None:
        super().__init__()

        if logspace:
            frequencies = 2.0 ** torch.arange(
                num_freqs,
                dtype=torch.float32
            )
        else:
            frequencies = torch.linspace(
                1.0,
                2.0 ** (num_freqs - 1),
                num_freqs,
                dtype=torch.float32
            )

        if include_pi:
            frequencies *= torch.pi

        self.register_buffer("frequencies", frequencies, persistent=False)
        self.include_input = include_input
        self.num_freqs = num_freqs

        self.out_dim = self.get_dims(input_dim)

    def get_dims(self, input_dim):
        temp = 1 if self.include_input or self.num_freqs == 0 else 0
        out_dim = input_dim * (self.num_freqs * 2 + temp)

        return out_dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.num_freqs > 0:
            embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
            if self.include_input:
                return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
            else:
                return torch.cat((embed.sin(), embed.cos()), dim=-1)
        else:
            return x

class LearnedFourierEmbedder(nn.Module):
    def __init__(self, input_dim, dim):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        per_channel_dim = half_dim // input_dim
        self.weights = nn.Parameter(torch.randn(per_channel_dim))

        self.out_dim = self.get_dims(input_dim)

    def forward(self, x):
        # [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
        freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
        fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
        return fouriered
    
    def get_dims(self, input_dim):
        return input_dim * (self.weights.shape[0] * 2 + 1)

class Sine(nn.Module):
    def __init__(self, w0 = 1.):
        super().__init__()
        self.w0 = w0
    def forward(self, x):
        return torch.sin(self.w0 * x)
    
class Siren(nn.Module):
    def __init__(
        self,
        in_dim,
        out_dim,
        w0 = 1.,
        c = 6.,
        is_first = False,
        use_bias = True,
        activation = None,
        dropout = 0.
    ):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.is_first = is_first

        weight = torch.zeros(out_dim, in_dim)
        bias = torch.zeros(out_dim) if use_bias else None
        self.init_(weight, bias, c = c, w0 = w0)

        self.weight = nn.Parameter(weight)
        self.bias = nn.Parameter(bias) if use_bias else None
        self.activation = Sine(w0) if activation is None else activation
        self.dropout = nn.Dropout(dropout)
    
    def init_(self, weight, bias, c, w0):
        dim = self.in_dim

        w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
        weight.uniform_(-w_std, w_std)

        if bias is not None:
            bias.uniform_(-w_std, w_std)

    def forward(self, x):
        out =  F.linear(x, self.weight, self.bias)
        out = self.activation(out)
        out = self.dropout(out)
        return out
    
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True):
    if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
        return nn.Identity(), input_dim

    elif embed_type == "fourier":
        embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)

    elif embed_type == "learned_fourier":
        embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs)
    
    elif embed_type == "siren":
        embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim)

    else:
        raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
    return embedder_obj


###################### AutoEncoder
class AutoEncoder(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        pretrained_model_name_or_path: str = ""
        num_latents: int = 256
        embed_dim: int = 64
        width: int = 768
        
    cfg: Config

    def configure(self) -> None:
        super().configure()

    def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        raise NotImplementedError

    def decode(self, z: torch.FloatTensor) -> torch.FloatTensor:
        raise NotImplementedError

    def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
        posterior = None
        if self.cfg.embed_dim > 0:
            moments = self.pre_kl(latents)
            posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
            if sample_posterior:
                kl_embed = posterior.sample()
            else:
                kl_embed = posterior.mode()
        else:
            kl_embed = latents
        return kl_embed, posterior
    
    def forward(self,
                surface: torch.FloatTensor,
                queries: torch.FloatTensor,
                sample_posterior: bool = True):
        shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)

        latents = self.decode(kl_embed) # [B, num_latents, width]

        logits = self.query(queries, latents) # [B,]

        return shape_latents, latents, posterior, logits
    
    def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor:
        raise NotImplementedError
    
    @torch.no_grad()
    def extract_geometry(self,
                         latents: torch.FloatTensor,
                         extract_mesh_func: str = "mc",
                         bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05),
                         octree_depth: int = 8,
                         num_chunks: int = 10000,
                         ):
        
        if isinstance(bounds, float):
            bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]

        bbox_min = np.array(bounds[0:3])
        bbox_max = np.array(bounds[3:6])
        bbox_size = bbox_max - bbox_min

        xyz_samples, grid_size, length = generate_dense_grid_points(
            bbox_min=bbox_min,
            bbox_max=bbox_max,
            octree_depth=octree_depth,
            indexing="ij"
        )
        xyz_samples = torch.FloatTensor(xyz_samples)
        batch_size = latents.shape[0]

        batch_logits = []
        for start in range(0, xyz_samples.shape[0], num_chunks):
            queries = xyz_samples[start: start + num_chunks, :].to(latents)
            batch_queries = repeat(queries, "p c -> b p c", b=batch_size)

            logits = self.query(batch_queries, latents)
            batch_logits.append(logits.cpu())

        grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy()

        mesh_v_f = []
        has_surface = np.zeros((batch_size,), dtype=np.bool_)
        for i in range(batch_size):
            try:
                if extract_mesh_func == "mc":
                    from skimage import measure
                    vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
                    # vertices, faces = mcubes.marching_cubes(grid_logits[i], 0)
                    vertices = vertices / grid_size * bbox_size + bbox_min
                    faces = faces[:, [2, 1, 0]]
                elif extract_mesh_func == "diffmc":
                    from diso import DiffMC
                    diffmc = DiffMC(dtype=torch.float32).to(latents.device)
                    vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
                    vertices = vertices * 2 - 1
                    vertices = vertices.cpu().numpy()
                    faces = faces.cpu().numpy()
                elif extract_mesh_func == "diffdmc":
                    from diso import DiffDMC
                    diffmc = DiffDMC(dtype=torch.float32).to(latents.device)
                    vertices, faces = diffmc(-torch.tensor(grid_logits[i]).float().to(latents.device), isovalue=0)
                    vertices = vertices * 2 - 1
                    vertices = vertices.cpu().numpy()
                    faces = faces.cpu().numpy()
                else:
                    raise NotImplementedError(f"{extract_mesh_func} not implement")
                mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces.astype(np.int64))))
                has_surface[i] = True
            except:
                mesh_v_f.append((None, None))
                has_surface[i] = False

        return mesh_v_f, has_surface


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
        self.feat_dim = feat_dim
        self.parameters = parameters

        if isinstance(parameters, list):
            self.mean = parameters[0]
            self.logvar = parameters[1]
        else:
            self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)

        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean)

    def sample(self):
        x = self.mean + self.std * torch.randn_like(self.mean)
        return x

    def kl(self, other=None, dims=(1, 2)):
        if self.deterministic:
            return torch.Tensor([0.])
        else:
            if other is None:
                return 0.5 * torch.mean(torch.pow(self.mean, 2)
                                        + self.var - 1.0 - self.logvar,
                                        dim=dims)
            else:
                return 0.5 * torch.mean(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
                    dim=dims)

    def nll(self, sample, dims=(1, 2)):
        if self.deterministic:
            return torch.Tensor([0.])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims)

    def mode(self):
        return self.mean


class PerceiverCrossAttentionEncoder(nn.Module):
    def __init__(self,
                 use_downsample: bool,
                 num_latents: int,
                 embedder: FourierEmbedder,
                 point_feats: int,
                 embed_point_feats: bool,
                 width: int,
                 heads: int,
                 layers: int,
                 init_scale: float = 0.25,
                 qkv_bias: bool = True,
                 use_ln_post: bool = False,
                 use_flash: bool = False,
                 use_checkpoint: bool = False,
                 use_multi_reso: bool = False,
                 resolutions: list = [],
                 sampling_prob: list = []):

        super().__init__()

        self.use_checkpoint = use_checkpoint
        self.num_latents = num_latents
        self.use_downsample = use_downsample
        self.embed_point_feats = embed_point_feats
        self.use_multi_reso = use_multi_reso
        self.resolutions = resolutions
        self.sampling_prob = sampling_prob

        if not self.use_downsample:
            self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)

        self.embedder = embedder
        if self.embed_point_feats:
            self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
        else:
            self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)

        self.cross_attn = ResidualCrossAttentionBlock(
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
        )

        self.self_attn = Perceiver(
            n_ctx=num_latents,
            width=width,
            layers=layers,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
            use_checkpoint=False
        )

        if use_ln_post:
            self.ln_post = nn.LayerNorm(width)
        else:
            self.ln_post = None

    def _forward(self, pc, feats):
        """

        Args:
            pc (torch.FloatTensor): [B, N, 3]
            feats (torch.FloatTensor or None): [B, N, C]

        Returns:

        """

        bs, N, D = pc.shape
        
        data = self.embedder(pc)
        if feats is not None:
            if self.embed_point_feats:
                feats = self.embedder(feats)
            data = torch.cat([data, feats], dim=-1)
        data = self.input_proj(data)

        if self.use_multi_reso:
            # number = 8192
            resolution = random.choice(self.resolutions, size=1, p=self.sampling_prob)[0]

            if resolution != N:

                flattened = pc.view(bs*N, D) # bs*N, 64.      103,4096,3 -> 421888,3
                batch = torch.arange(bs).to(pc.device) # 103
                batch = torch.repeat_interleave(batch, N) # bs*N. 421888
                pos = flattened
                ratio = 1.0 * resolution / N # 0.0625
                idx = fps(pos, batch, ratio=ratio)  #26368
                pc = pc.view(bs*N, -1)[idx].view(bs, -1, D)
                bs,N,D=feats.shape
                flattened1 = feats.view(bs*N, D)
                feats= flattened1.view(bs*N, -1)[idx].view(bs, -1, D)
                bs, N, D = pc.shape

        if self.use_downsample:
            ###### fps
            from torch_cluster import fps
            flattened = pc.view(bs*N, D) # bs*N, 64

            batch = torch.arange(bs).to(pc.device)
            batch = torch.repeat_interleave(batch, N) # bs*N

            pos = flattened

            ratio = 1.0 * self.num_latents / N

            idx = fps(pos, batch, ratio=ratio)

            query = data.view(bs*N, -1)[idx].view(bs, -1, data.shape[-1])
        else:
            query = self.query
            query = repeat(query, "m c -> b m c", b=bs)

        latents = self.cross_attn(query, data)
        latents = self.self_attn(latents)

        if self.ln_post is not None:
            latents = self.ln_post(latents)

        return latents

    def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
        """

        Args:
            pc (torch.FloatTensor): [B, N, 3]
            feats (torch.FloatTensor or None): [B, N, C]

        Returns:
            dict
        """

        return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)


class PerceiverCrossAttentionDecoder(nn.Module):

    def __init__(self,
                 num_latents: int,
                 out_dim: int,
                 embedder: FourierEmbedder,
                 width: int,
                 heads: int,
                 init_scale: float = 0.25,
                 qkv_bias: bool = True,
                 use_flash: bool = False,
                 use_checkpoint: bool = False):

        super().__init__()

        self.use_checkpoint = use_checkpoint
        self.embedder = embedder

        self.query_proj = nn.Linear(self.embedder.out_dim, width)

        self.cross_attn_decoder = ResidualCrossAttentionBlock(
            n_data=num_latents,
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash
        )

        self.ln_post = nn.LayerNorm(width)
        self.output_proj = nn.Linear(width, out_dim)

    def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
        queries = self.query_proj(self.embedder(queries))
        x = self.cross_attn_decoder(queries, latents)
        x = self.ln_post(x)
        x = self.output_proj(x)
        return x

    def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
        return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)


@craftsman.register("michelangelo-autoencoder")
class MichelangeloAutoencoder(AutoEncoder):
    r"""
    A VAE model for encoding shapes into latents and decoding latent representations into shapes.
    """

    @dataclass
    class Config(BaseModule.Config):
        pretrained_model_name_or_path: str = ""
        n_samples: int = 4096
        use_downsample: bool = False
        downsample_ratio: float = 0.0625
        num_latents: int = 256
        point_feats: int = 0
        embed_point_feats: bool = False
        out_dim: int = 1
        embed_dim: int = 64
        embed_type: str = "fourier"
        num_freqs: int = 8
        include_pi: bool = True
        width: int = 768
        heads: int = 12
        num_encoder_layers: int = 8
        num_decoder_layers: int = 16
        init_scale: float = 0.25
        qkv_bias: bool = True
        use_ln_post: bool = False
        use_flash: bool = False
        use_checkpoint: bool = True
        use_multi_reso: Optional[bool] = False
        resolutions: Optional[List[int]] = None
        sampling_prob: Optional[List[float]] = None

    cfg: Config

    def configure(self) -> None:
        super().configure()

        self.embedder = get_embedder(embed_type=self.cfg.embed_type, num_freqs=self.cfg.num_freqs, include_pi=self.cfg.include_pi)

        # encoder
        self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
        self.encoder = PerceiverCrossAttentionEncoder(
            use_downsample=self.cfg.use_downsample,
            embedder=self.embedder,
            num_latents=self.cfg.num_latents,
            point_feats=self.cfg.point_feats,
            embed_point_feats=self.cfg.embed_point_feats,
            width=self.cfg.width,
            heads=self.cfg.heads,
            layers=self.cfg.num_encoder_layers,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_ln_post=self.cfg.use_ln_post,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint,
            use_multi_reso=self.cfg.use_multi_reso,
            resolutions=self.cfg.resolutions,
            sampling_prob=self.cfg.sampling_prob
        )

        if self.cfg.embed_dim > 0:
            # VAE embed
            self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
            self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
            self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
        else:
            self.latent_shape = (self.cfg.num_latents, self.cfg.width)

        self.transformer = Perceiver(
            n_ctx=self.cfg.num_latents,
            width=self.cfg.width,
            layers=self.cfg.num_decoder_layers,
            heads=self.cfg.heads,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint
        )

        # decoder
        self.decoder = PerceiverCrossAttentionDecoder(
            embedder=self.embedder,
            out_dim=self.cfg.out_dim,
            num_latents=self.cfg.num_latents,
            width=self.cfg.width,
            heads=self.cfg.heads,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint
        )

        if self.cfg.pretrained_model_name_or_path != "":
            print(f"Loading pretrained model from {self.cfg.pretrained_model_name_or_path}")
            pretrained_ckpt = torch.load(self.cfg.pretrained_model_name_or_path, map_location="cpu")
            if 'state_dict' in pretrained_ckpt:
                _pretrained_ckpt = {}
                for k, v in pretrained_ckpt['state_dict'].items():
                    if k.startswith('shape_model.'):
                        _pretrained_ckpt[k.replace('shape_model.', '')] = v
                pretrained_ckpt = _pretrained_ckpt
            else:
                _pretrained_ckpt = {}
                for k, v in pretrained_ckpt.items():
                    if k.startswith('shape_model.'):
                        _pretrained_ckpt[k.replace('shape_model.', '')] = v
                pretrained_ckpt = _pretrained_ckpt
                
            self.load_state_dict(pretrained_ckpt, strict=False)
            
    
    def encode(self,
               surface: torch.FloatTensor,
               sample_posterior: bool = True):
        """
        Args:
            surface (torch.FloatTensor): [B, N, 3+C]
            sample_posterior (bool):

        Returns:
            shape_latents (torch.FloatTensor): [B, num_latents, width]
            kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
            posterior (DiagonalGaussianDistribution or None):
        """
        assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
            Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
        
        pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
        bs, N, D = pc.shape
        if N > self.cfg.n_samples:
            # idx = furthest_point_sample(pc, self.cfg.n_samples) # (B, 3, npoint)
            # pc = gather_operation(pc, idx).transpose(2, 1).contiguous()
            # feats = gather_operation(feats, idx).transpose(2, 1).contiguous()
            from torch_cluster import fps
            flattened = pc.view(bs*N, D) # bs*N, 64
            batch = torch.arange(bs).to(pc.device)
            batch = torch.repeat_interleave(batch, N) # bs*N
            pos = flattened
            ratio = self.cfg.n_samples / N 
            idx = fps(pos, batch, ratio=ratio)
            pc = pc.view(bs*N, -1)[idx].view(bs, -1, pc.shape[-1])
            feats = feats.view(bs*N, -1)[idx].view(bs, -1, feats.shape[-1])

        shape_latents = self.encoder(pc, feats) # B, num_latents, width
        kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior)  # B, num_latents, embed_dim

        return shape_latents, kl_embed, posterior


    def decode(self, 
               latents: torch.FloatTensor):
        """
        Args:
            latents (torch.FloatTensor): [B, embed_dim]

        Returns:
            latents (torch.FloatTensor): [B, embed_dim]
        """
        latents = self.post_kl(latents) # [B, num_latents, embed_dim] -> [B, num_latents, width]

        return self.transformer(latents)


    def query(self, 
              queries: torch.FloatTensor, 
              latents: torch.FloatTensor):
        """
        Args:
            queries (torch.FloatTensor): [B, N, 3]
            latents (torch.FloatTensor): [B, embed_dim]

        Returns:
            logits (torch.FloatTensor): [B, N], occupancy logits
        """

        logits = self.decoder(queries, latents).squeeze(-1)

        return logits