wyysf's picture
i
0f079b2
raw
history blame
27 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from typing import Callable, List, Optional, Union
import PIL
import torch
import torchvision.transforms.functional as TF
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, logging, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from einops import rearrange, repeat
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MVDiffusionImagePipeline(DiffusionPipeline):
r"""
Pipeline to generate image variations from an input image using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
# TODO: feature_extractor is required to encode images (if they are in PIL format),
# we should give a descriptive message if the pipeline doesn't have one.
_optional_components = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
image_encoder: CLIPVisionModelWithProjection,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
camera_embedding_type: str = 'e_de_da_sincos',
num_views: int = 6
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warn(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.camera_embedding_type: str = camera_embedding_type
self.num_views: int = num_views
self.camera_embedding = torch.tensor(
[[ 0.0000, 0.0000, 0.0000, 1.0000, 0.0000],
[ 0.0000, -0.2362, 0.8125, 1.0000, 0.0000],
[ 0.0000, -0.1686, 1.6934, 1.0000, 0.0000],
[ 0.0000, 0.5220, 3.1406, 1.0000, 0.0000],
[ 0.0000, 0.6904, 4.8359, 1.0000, 0.0000],
[ 0.0000, 0.3733, 5.5859, 1.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
[ 0.0000, -0.2362, 0.8125, 0.0000, 1.0000],
[ 0.0000, -0.1686, 1.6934, 0.0000, 1.0000],
[ 0.0000, 0.5220, 3.1406, 0.0000, 1.0000],
[ 0.0000, 0.6904, 4.8359, 0.0000, 1.0000],
[ 0.0000, 0.3733, 5.5859, 0.0000, 1.0000]], dtype=torch.float16)
def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance):
dtype = next(self.image_encoder.parameters()).dtype
image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
image_pt = image_pt.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image_pt).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
# Note: repeat differently from official pipelines
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device).to(dtype)
image_pt = image_pt * 2.0 - 1.0
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
# Note: repeat differently from official pipelines
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
if do_classifier_free_guidance:
image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])
return image_embeddings, image_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, image, height, width, callback_steps):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_camera_embedding(self, camera_embedding: Union[float, torch.Tensor], do_classifier_free_guidance, num_images_per_prompt=1):
# (B, 3)
camera_embedding = camera_embedding.to(dtype=self.unet.dtype, device=self.unet.device)
if self.camera_embedding_type == 'e_de_da_sincos':
# (B, 6)
camera_embedding = torch.cat([
torch.sin(camera_embedding),
torch.cos(camera_embedding)
], dim=-1)
assert self.unet.config.class_embed_type == 'projection'
assert self.unet.config.projection_class_embeddings_input_dim == 6 or self.unet.config.projection_class_embeddings_input_dim == 10
else:
raise NotImplementedError
# Note: repeat differently from official pipelines
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
camera_embedding = camera_embedding.repeat(num_images_per_prompt, 1)
if do_classifier_free_guidance:
camera_embedding = torch.cat([
camera_embedding,
camera_embedding
], dim=0)
return camera_embedding
@torch.no_grad()
def __call__(
self,
image: Union[List[PIL.Image.Image], torch.FloatTensor],
# elevation_cond: torch.FloatTensor,
# elevation: torch.FloatTensor,
# azimuth: torch.FloatTensor,
camera_embedding: Optional[torch.FloatTensor]=None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
normal_cond: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
Examples:
```py
from diffusers import StableDiffusionImageVariationPipeline
from PIL import Image
from io import BytesIO
import requests
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", revision="v2.0"
)
pipe = pipe.to("cuda")
url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
out = pipe(image, num_images_per_prompt=3, guidance_scale=15)
out["images"][0].save("result.jpg")
```
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(image, height, width, callback_steps)
# 2. Define call parameters
if isinstance(image, list):
batch_size = len(image)
elif isinstance(image, torch.Tensor):
batch_size = image.shape[0]
assert batch_size >= self.num_views and batch_size % self.num_views == 0
elif isinstance(image, PIL.Image.Image):
image = [image]*self.num_views*2
batch_size = self.num_views*2
device = self._execution_device
dtype = self.vae.dtype
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale != 1.0
# 3. Encode input image
if isinstance(image, list):
image_pil = image
elif isinstance(image, torch.Tensor):
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
image_embeddings, image_latents = self._encode_image(image_pil, device, num_images_per_prompt, do_classifier_free_guidance)
if normal_cond is not None:
if isinstance(normal_cond, list):
normal_cond_pil = normal_cond
elif isinstance(normal_cond, torch.Tensor):
normal_cond_pil = [TF.to_pil_image(normal_cond[i]) for i in range(normal_cond.shape[0])]
_, image_latents = self._encode_image(normal_cond_pil, device, num_images_per_prompt, do_classifier_free_guidance)
# assert len(elevation_cond) == batch_size and len(elevation) == batch_size and len(azimuth) == batch_size
# camera_embeddings = self.prepare_camera_condition(elevation_cond, elevation, azimuth, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
if camera_embedding is not None:
assert len(camera_embedding) == batch_size
else:
camera_embedding = self.camera_embedding.to(dtype)
camera_embedding = repeat(camera_embedding, "Nv Nce -> (B Nv) Nce", B=batch_size//len(camera_embedding))
camera_embeddings = self.prepare_camera_embedding(camera_embedding, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.out_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = torch.cat([
latent_model_input, image_latents
], dim=1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, class_labels=camera_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
if num_channels_latents == 8:
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)