Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import datetime | |
import logging | |
import inspect | |
import math | |
import os | |
from typing import Dict, Optional, Tuple, List | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from dataclasses import dataclass | |
from packaging import version | |
import shutil | |
from collections import defaultdict | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import torchvision.transforms.functional as TF | |
from torchvision.transforms import InterpolationMode | |
from torchvision.utils import make_grid, save_image | |
import transformers | |
import accelerate | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
import diffusers | |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, StableDiffusionPipeline | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils import check_min_version, deprecate, is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel | |
from mvdiffusion.data.objaverse_dataset import ObjaverseDataset as MVDiffusionDataset | |
from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline | |
from einops import rearrange | |
import time | |
import pdb | |
logger = get_logger(__name__, log_level="INFO") | |
class TrainingConfig: | |
pretrained_model_name_or_path: str | |
pretrained_unet_path: Optional[str] | |
revision: Optional[str] | |
train_dataset: Dict | |
validation_dataset: Dict | |
validation_train_dataset: Dict | |
output_dir: str | |
seed: Optional[int] | |
train_batch_size: int | |
validation_batch_size: int | |
validation_train_batch_size: int | |
max_train_steps: int | |
gradient_accumulation_steps: int | |
gradient_checkpointing: bool | |
learning_rate: float | |
scale_lr: bool | |
lr_scheduler: str | |
lr_warmup_steps: int | |
snr_gamma: Optional[float] | |
use_8bit_adam: bool | |
allow_tf32: bool | |
use_ema: bool | |
dataloader_num_workers: int | |
adam_beta1: float | |
adam_beta2: float | |
adam_weight_decay: float | |
adam_epsilon: float | |
max_grad_norm: Optional[float] | |
prediction_type: Optional[str] | |
logging_dir: str | |
vis_dir: str | |
mixed_precision: Optional[str] | |
report_to: Optional[str] | |
local_rank: int | |
checkpointing_steps: int | |
checkpoints_total_limit: Optional[int] | |
resume_from_checkpoint: Optional[str] | |
enable_xformers_memory_efficient_attention: bool | |
validation_steps: int | |
validation_sanity_check: bool | |
tracker_project_name: str | |
trainable_modules: Optional[list] | |
use_classifier_free_guidance: bool | |
condition_drop_rate: float | |
scale_input_latents: bool | |
pipe_kwargs: Dict | |
pipe_validation_kwargs: Dict | |
unet_from_pretrained_kwargs: Dict | |
validation_guidance_scales: List[float] | |
validation_grid_nrow: int | |
camera_embedding_lr_mult: float | |
num_views: int | |
camera_embedding_type: str | |
pred_type: str | |
drop_type: str | |
last_global_step: int | |
def log_validation(dataloader, vae, feature_extractor, image_encoder, unet, cfg: TrainingConfig, accelerator, weight_dtype, global_step, name, save_dir): | |
logger.info(f"Running {name} ... ") | |
pipeline = MVDiffusionImagePipeline( | |
image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=accelerator.unwrap_model(unet), safety_checker=None, | |
scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"), | |
**cfg.pipe_kwargs | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
if cfg.enable_xformers_memory_efficient_attention: | |
pipeline.enable_xformers_memory_efficient_attention() | |
if cfg.seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed) | |
images_cond, images_gt, images_pred = [], [], defaultdict(list) | |
for i, batch in enumerate(dataloader): | |
# (B, Nv, 3, H, W) | |
imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out'] | |
# repeat (2B, Nv, 3, H, W) | |
imgs_in = torch.cat([imgs_in]*2, dim=0) | |
imgs_out = torch.cat([normals_out, colors_out], dim=0) | |
# (2B, Nv, Nce) | |
camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0) | |
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0) | |
camera_task_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1) | |
# (B*Nv, 3, H, W) | |
imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W") | |
# (B*Nv, Nce) | |
camera_task_embeddings = rearrange(camera_task_embeddings, "B Nv Nce -> (B Nv) Nce") | |
images_cond.append(imgs_in) | |
images_gt.append(imgs_out) | |
with torch.autocast("cuda"): | |
# B*Nv images | |
for guidance_scale in cfg.validation_guidance_scales: | |
out = pipeline( | |
imgs_in, camera_task_embeddings, generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs | |
).images | |
shape = out.shape | |
out0, out1 = out[:shape[0]//2], out[shape[0]//2:] | |
out = [] | |
for ii in range(shape[0]//2): | |
out.append(out0[ii]) | |
out.append(out1[ii]) | |
out = torch.stack(out, dim=0) | |
images_pred[f"{name}-sample_cfg{guidance_scale:.1f}"].append(out) | |
images_cond_all = torch.cat(images_cond, dim=0) | |
images_gt_all = torch.cat(images_gt, dim=0) | |
images_pred_all = {} | |
for k, v in images_pred.items(): | |
images_pred_all[k] = torch.cat(v, dim=0) | |
nrow = cfg.validation_grid_nrow | |
ncol = images_cond_all.shape[0] // nrow | |
images_cond_grid = make_grid(images_cond_all, nrow=nrow, ncol=ncol, padding=0, value_range=(0, 1)) | |
images_gt_grid = make_grid(images_gt_all, nrow=nrow, ncol=ncol, padding=0, value_range=(0, 1)) | |
images_pred_grid = {} | |
for k, v in images_pred_all.items(): | |
images_pred_grid[k] = make_grid(v, nrow=nrow, ncol=ncol, padding=0, value_range=(0, 1)) | |
save_image(images_cond_grid, os.path.join(save_dir, f"{global_step}-{name}-cond.jpg")) | |
save_image(images_gt_grid, os.path.join(save_dir, f"{global_step}-{name}-gt.jpg")) | |
for k, v in images_pred_grid.items(): | |
save_image(v, os.path.join(save_dir, f"{global_step}-{k}.jpg")) | |
torch.cuda.empty_cache() | |
def main( | |
cfg: TrainingConfig | |
): | |
# override local_rank with envvar | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != cfg.local_rank: | |
cfg.local_rank = env_local_rank | |
vis_dir = os.path.join(cfg.output_dir, cfg.vis_dir) | |
logging_dir = os.path.join(cfg.output_dir, cfg.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=cfg.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=cfg.gradient_accumulation_steps, | |
mixed_precision=cfg.mixed_precision, | |
log_with=cfg.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if cfg.seed is not None: | |
set_seed(cfg.seed) | |
generator = torch.Generator(device=accelerator.device).manual_seed(cfg.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
os.makedirs(cfg.output_dir, exist_ok=True) | |
os.makedirs(vis_dir, exist_ok=True) | |
OmegaConf.save(cfg, os.path.join(cfg.output_dir, 'config.yaml')) | |
# Load scheduler, tokenizer and models. | |
noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler") | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision) | |
feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision) | |
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision) | |
if cfg.pretrained_unet_path is None: | |
unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_model_name_or_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) | |
else: | |
print("load pre-trained unet from ", cfg.pretrained_unet_path) | |
unet = UNetMV2DConditionModel.from_pretrained(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) | |
if cfg.use_ema: | |
ema_unet = EMAModel(unet.parameters(), model_cls=UNetMV2DConditionModel, model_config=unet.config) | |
def compute_snr(timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
# Freeze vae and text_encoder | |
vae.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
if cfg.trainable_modules is None: | |
unet.requires_grad_(True) | |
else: | |
unet.requires_grad_(False) | |
for name, module in unet.named_modules(): | |
if name.endswith(tuple(cfg.trainable_modules)): | |
for params in module.parameters(): | |
# print("trainable: ", params) | |
params.requires_grad = True | |
if cfg.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warn( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
print("use xformers to speed up") | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# `accelerate` 0.16.0 will have better support for customized saving | |
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if cfg.use_ema: | |
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
for i, model in enumerate(models): | |
model.save_pretrained(os.path.join(output_dir, "unet")) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
if cfg.use_ema: | |
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNetMV2DConditionModel) | |
ema_unet.load_state_dict(load_model.state_dict()) | |
ema_unet.to(accelerator.device) | |
del load_model | |
for i in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
load_model = UNetMV2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
if cfg.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if cfg.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if cfg.scale_lr: | |
cfg.learning_rate = ( | |
cfg.learning_rate * cfg.gradient_accumulation_steps * cfg.train_batch_size * accelerator.num_processes | |
) | |
# Initialize the optimizer | |
if cfg.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
else: | |
optimizer_cls = torch.optim.AdamW | |
params, params_class_embedding = [], [] | |
for name, param in unet.named_parameters(): | |
if 'class_embedding' in name: | |
params_class_embedding.append(param) | |
else: | |
params.append(param) | |
optimizer = optimizer_cls( | |
[ | |
{"params": params, "lr": cfg.learning_rate}, | |
{"params": params_class_embedding, "lr": cfg.learning_rate * cfg.camera_embedding_lr_mult} | |
], | |
betas=(cfg.adam_beta1, cfg.adam_beta2), | |
weight_decay=cfg.adam_weight_decay, | |
eps=cfg.adam_epsilon, | |
) | |
lr_scheduler = get_scheduler( | |
cfg.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=cfg.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=cfg.max_train_steps * accelerator.num_processes, | |
) | |
# Get the training dataset | |
train_dataset = MVDiffusionDataset( | |
**cfg.train_dataset | |
) | |
validation_dataset = MVDiffusionDataset( | |
**cfg.validation_dataset | |
) | |
validation_train_dataset = MVDiffusionDataset( | |
**cfg.validation_train_dataset | |
) | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=cfg.train_batch_size, shuffle=True, num_workers=cfg.dataloader_num_workers, | |
) | |
validation_dataloader = torch.utils.data.DataLoader( | |
validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers | |
) | |
validation_train_dataloader = torch.utils.data.DataLoader( | |
validation_train_dataset, batch_size=cfg.validation_train_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers | |
) | |
# Prepare everything with our `accelerator`. | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
if cfg.use_ema: | |
ema_unet.to(accelerator.device) | |
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
cfg.mixed_precision = accelerator.mixed_precision | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
cfg.mixed_precision = accelerator.mixed_precision | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
image_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
clip_image_mean = torch.as_tensor(feature_extractor.image_mean)[:,None,None].to(accelerator.device, dtype=torch.float32) | |
clip_image_std = torch.as_tensor(feature_extractor.image_std)[:,None,None].to(accelerator.device, dtype=torch.float32) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / cfg.gradient_accumulation_steps) | |
num_train_epochs = math.ceil(cfg.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
# tracker_config = dict(vars(cfg)) | |
tracker_config = {} | |
accelerator.init_trackers(cfg.tracker_project_name, tracker_config) | |
# Train! | |
total_batch_size = cfg.train_batch_size * accelerator.num_processes * cfg.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {cfg.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {cfg.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {cfg.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if cfg.resume_from_checkpoint: | |
if cfg.resume_from_checkpoint != "latest": | |
path = os.path.basename(cfg.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
if os.path.exists(os.path.join(cfg.output_dir, "checkpoint")): | |
path = "checkpoint" | |
else: | |
dirs = os.listdir(cfg.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{cfg.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
cfg.resume_from_checkpoint = None | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(cfg.output_dir, path)) | |
# global_step = int(path.split("-")[1]) | |
global_step = cfg.last_global_step | |
resume_global_step = global_step * cfg.gradient_accumulation_steps | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_step = resume_global_step % (num_update_steps_per_epoch * cfg.gradient_accumulation_steps) | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(global_step, cfg.max_train_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Steps") | |
for epoch in range(first_epoch, num_train_epochs): | |
unet.train() | |
train_loss = 0.0 | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
if cfg.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
if step % cfg.gradient_accumulation_steps == 0: | |
progress_bar.update(1) | |
continue | |
with accelerator.accumulate(unet): | |
# (B, Nv, 3, H, W) | |
imgs_in, colors_out, normals_out = batch['imgs_in'], batch['imgs_out'], batch['normals_out'] | |
bnm, Nv = imgs_in.shape[:2] | |
# repeat (2B, Nv, 3, H, W) | |
imgs_in = torch.cat([imgs_in]*2, dim=0) | |
imgs_out = torch.cat([normals_out, colors_out], dim=0) | |
# (2B, Nv, Nce) | |
camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0) | |
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0) | |
camera_task_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1) | |
# (B*Nv, 3, H, W) | |
imgs_in, imgs_out = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W"), rearrange(imgs_out, "B Nv C H W -> (B Nv) C H W") | |
# (B*Nv, Nce) | |
camera_task_embeddings = rearrange(camera_task_embeddings, "B Nv Nce -> (B Nv) Nce") | |
# (B*Nv, Nce') | |
if cfg.camera_embedding_type == 'e_de_da_sincos': | |
camera_task_embeddings = torch.cat([ | |
torch.sin(camera_task_embeddings), | |
torch.cos(camera_task_embeddings) | |
], dim=-1) | |
else: | |
raise NotImplementedError | |
imgs_in, imgs_out, camera_task_embeddings = imgs_in.to(weight_dtype), imgs_out.to(weight_dtype), camera_task_embeddings.to(weight_dtype) | |
# (B*Nv, 4, Hl, Wl) | |
# pdb.set_trace() | |
cond_vae_embeddings = vae.encode(imgs_in * 2.0 - 1.0).latent_dist.mode() | |
if cfg.scale_input_latents: | |
cond_vae_embeddings = cond_vae_embeddings * vae.config.scaling_factor | |
latents = vae.encode(imgs_out * 2.0 - 1.0).latent_dist.sample() * vae.config.scaling_factor | |
# DO NOT use this! Very slow! | |
# imgs_in_pil = [TF.to_pil_image(img) for img in imgs_in] | |
# imgs_in_proc = feature_extractor(images=imgs_in_pil, return_tensors='pt').pixel_values.to(dtype=latents.dtype, device=latents.device) | |
imgs_in_proc = TF.resize(imgs_in, (feature_extractor.crop_size['height'], feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC) | |
# do the normalization in float32 to preserve precision | |
imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(weight_dtype) | |
# (B*Nv, 1, 768) | |
image_embeddings = image_encoder(imgs_in_proc).image_embeds.unsqueeze(1) | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# same noise for different views of the same object | |
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz // cfg.num_views,), device=latents.device).repeat_interleave(cfg.num_views) | |
timesteps = timesteps.long() | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Conditioning dropout to support classifier-free guidance during inference. For more details | |
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. | |
if cfg.use_classifier_free_guidance and cfg.condition_drop_rate > 0.: | |
# assert cfg.drop_type == 'drop_as_a_whole' | |
if cfg.drop_type == 'drop_as_a_whole': | |
# drop a group of normals and colors as a whole | |
random_p = torch.rand(bnm, device=latents.device, generator=generator) | |
# Sample masks for the conditioning images. | |
image_mask_dtype = cond_vae_embeddings.dtype | |
image_mask = 1 - ( | |
(random_p >= cfg.condition_drop_rate).to(image_mask_dtype) | |
* (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype) | |
) | |
image_mask = image_mask.reshape(bnm, 1, 1, 1, 1).repeat(1, Nv, 1, 1, 1) | |
image_mask = rearrange(image_mask, "B Nv C H W -> (B Nv) C H W") | |
image_mask = torch.cat([image_mask]*2, dim=0) | |
# Final image conditioning. | |
cond_vae_embeddings = image_mask * cond_vae_embeddings | |
# Sample masks for the conditioning images. | |
clip_mask_dtype = image_embeddings.dtype | |
clip_mask = 1 - ( | |
(random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype) | |
) | |
clip_mask = clip_mask.reshape(bnm, 1, 1, 1).repeat(1, Nv, 1, 1) | |
clip_mask = rearrange(clip_mask, "B Nv M C -> (B Nv) M C") | |
clip_mask = torch.cat([clip_mask]*2, dim=0) | |
# Final image conditioning. | |
image_embeddings = clip_mask * image_embeddings | |
elif cfg.drop_type == 'drop_independent': | |
# randomly drop all independently | |
random_p = torch.rand(bsz, device=latents.device, generator=generator) | |
# Sample masks for the conditioning images. | |
image_mask_dtype = cond_vae_embeddings.dtype | |
image_mask = 1 - ( | |
(random_p >= cfg.condition_drop_rate).to(image_mask_dtype) | |
* (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype) | |
) | |
image_mask = image_mask.reshape(bsz, 1, 1, 1) | |
# Final image conditioning. | |
cond_vae_embeddings = image_mask * cond_vae_embeddings | |
# Sample masks for the conditioning images. | |
clip_mask_dtype = image_embeddings.dtype | |
clip_mask = 1 - ( | |
(random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype) | |
) | |
clip_mask = clip_mask.reshape(bsz, 1, 1) | |
# Final image conditioning. | |
image_embeddings = clip_mask * image_embeddings | |
elif cfg.drop_type == 'drop_joint': | |
# randomly drop all independently | |
random_p = torch.rand(bsz//2, device=latents.device, generator=generator) | |
# Sample masks for the conditioning images. | |
image_mask_dtype = cond_vae_embeddings.dtype | |
image_mask = 1 - ( | |
(random_p >= cfg.condition_drop_rate).to(image_mask_dtype) | |
* (random_p < 3 * cfg.condition_drop_rate).to(image_mask_dtype) | |
) | |
image_mask = torch.cat([image_mask]*2, dim=0) | |
image_mask = image_mask.reshape(bsz, 1, 1, 1) | |
# Final image conditioning. | |
cond_vae_embeddings = image_mask * cond_vae_embeddings | |
# Sample masks for the conditioning images. | |
clip_mask_dtype = image_embeddings.dtype | |
clip_mask = 1 - ( | |
(random_p < 2 * cfg.condition_drop_rate).to(clip_mask_dtype) | |
) | |
clip_mask = torch.cat([clip_mask]*2, dim=0) | |
clip_mask = clip_mask.reshape(bsz, 1, 1) | |
# Final image conditioning. | |
image_embeddings = clip_mask * image_embeddings | |
# (B*Nv, 8, Hl, Wl) | |
latent_model_input = torch.cat([noisy_latents, cond_vae_embeddings], dim=1) | |
model_pred = unet( | |
latent_model_input, | |
timesteps, | |
encoder_hidden_states=image_embeddings, | |
class_labels=camera_task_embeddings | |
).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if cfg.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
# This is discussed in Section 4.2 of the same paper. | |
snr = compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
# We first calculate the original loss. Then we mean over the non-batch dimensions and | |
# rebalance the sample-wise losses with their respective loss weights. | |
# Finally, we take the mean of the rebalanced loss. | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(cfg.train_batch_size)).mean() | |
train_loss += avg_loss.item() / cfg.gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients and cfg.max_grad_norm is not None: | |
accelerator.clip_grad_norm_(unet.parameters(), cfg.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if cfg.use_ema: | |
ema_unet.step(unet.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
if global_step % cfg.checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
save_path = os.path.join(cfg.output_dir, f"checkpoint") | |
accelerator.save_state(save_path) | |
try: | |
unet.module.save_pretrained(os.path.join(cfg.output_dir, f"unet-{global_step}/unet")) | |
except: | |
unet.save_pretrained(os.path.join(cfg.output_dir, f"unet-{global_step}/unet")) | |
logger.info(f"Saved state to {save_path}") | |
if global_step % cfg.validation_steps == 0 or (cfg.validation_sanity_check and global_step == 1): | |
if accelerator.is_main_process: | |
if cfg.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_unet.store(unet.parameters()) | |
ema_unet.copy_to(unet.parameters()) | |
log_validation( | |
validation_dataloader, | |
vae, | |
feature_extractor, | |
image_encoder, | |
unet, | |
cfg, | |
accelerator, | |
weight_dtype, | |
global_step, | |
'validation', | |
vis_dir | |
) | |
log_validation( | |
validation_train_dataloader, | |
vae, | |
feature_extractor, | |
image_encoder, | |
unet, | |
cfg, | |
accelerator, | |
weight_dtype, | |
global_step, | |
'validation_train', | |
vis_dir | |
) | |
if cfg.use_ema: | |
# Switch back to the original UNet parameters. | |
ema_unet.restore(unet.parameters()) | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if global_step >= cfg.max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
if cfg.use_ema: | |
ema_unet.copy_to(unet.parameters()) | |
pipeline = MVDiffusionImagePipeline( | |
image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=unet, safety_checker=None, | |
scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"), | |
**cfg.pipe_kwargs | |
) | |
os.makedirs(os.path.join(cfg.output_dir, "pipeckpts"), exist_ok=True) | |
pipeline.save_pretrained(os.path.join(cfg.output_dir, "pipeckpts")) | |
accelerator.end_training() | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', type=str, required=True) | |
args = parser.parse_args() | |
schema = OmegaConf.structured(TrainingConfig) | |
cfg = OmegaConf.load(args.config) | |
cfg = OmegaConf.merge(schema, cfg) | |
main(cfg) | |