Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict, Optional, Tuple, List | |
from dataclasses import dataclass | |
import os | |
import sys | |
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(os.path.join(proj_dir)) | |
import time | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
import PIL | |
from PIL import Image | |
import rembg | |
from rembg import remove | |
rembg_session = rembg.new_session() | |
from segment_anything import sam_model_registry, SamPredictor | |
import craftsman | |
from craftsman.systems.base import BaseSystem | |
from craftsman.utils.config import ExperimentConfig, load_config | |
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
def load_model( | |
ckpt_path: str, | |
config_path: str, | |
scheluder_name: str = None, | |
scheluder_dict : dict = None, | |
device = "cuda" | |
): | |
cfg: ExperimentConfig | |
cfg = load_config(config_path) | |
if 'pretrained_model_name_or_path' not in cfg.system.condition_model or cfg.system.condition_model.pretrained_model_name_or_path is None: | |
cfg.system.condition_model.config_path = config_path.replace("config.yaml", "clip_config.json") | |
# cfg.system.denoise_scheduler= { | |
# 'num_train_timesteps': 1000, | |
# 'beta_start': 0.00085, | |
# 'beta_end': 0.012, | |
# 'beta_schedule': 'scaled_linear', | |
# 'steps_offset': 1 | |
# } | |
system: BaseSystem = craftsman.find(cfg.system_type)( | |
cfg.system, | |
) | |
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") | |
system.load_state_dict(torch.load(ckpt_path, map_location=torch.device('cpu'))['state_dict']) | |
system = system.to(device).eval() | |
return system | |
def rmbg_sam(iamge, foreground_ratio): | |
return iamge | |
def rmbg_rembg(iamge, foreground_ratio): | |
return iamge | |
class RMBG(object): | |
def __init__(self, device): | |
sam_checkpoint = f"{parent_dir}/ckpts/SAM/sam_vit_h_4b8939.pth" | |
model_type = "vit_h" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device) | |
self.predictor = SamPredictor(sam) | |
def rmbg_sam(self, input_image, crop_size, foreground_ratio, segment=True, rescale=True): | |
RES = 1024 | |
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) | |
if segment: | |
image_rem = input_image.convert('RGBA') | |
image_nobg = remove(image_rem, alpha_matting=True) | |
arr = np.asarray(image_nobg)[:, :, -1] | |
x_nonzero = np.nonzero(arr.sum(axis=0)) | |
y_nonzero = np.nonzero(arr.sum(axis=1)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
input_image = sam_segment(self.predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) | |
# Rescale and recenter | |
if rescale: | |
image_arr = np.array(input_image) | |
in_w, in_h = image_arr.shape[:2] | |
out_res = min(RES, max(in_w, in_h)) | |
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) | |
x, y, w, h = cv2.boundingRect(mask) | |
max_size = max(w, h) | |
side_len = int(max_size / foreground_ratio) | |
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) | |
center = side_len // 2 | |
padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w] | |
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) | |
rgba_arr = np.array(rgba) / 255.0 | |
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) | |
input_image = Image.fromarray((rgb * 255).astype(np.uint8)) | |
else: | |
input_image = expand2square(input_image, (127, 127, 127, 0)) | |
return input_image | |
def rmbg_rembg(self, image, crop_size, foreground_ratio, background_choice, backgroud_color): | |
print(background_choice) | |
if background_choice == "Alpha as mask": | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
else: | |
image = remove_background(image, rembg_session, force_remove=True) | |
image = do_resize_content(image, foreground_ratio) | |
image = expand_to_square(image) | |
image = add_background(image, backgroud_color) | |
return image.convert("RGB") | |
def run(self, rm_type, image, crop_size, foreground_ratio, background_choice, backgroud_color): | |
if "Remove" in background_choice: | |
if rm_type.upper() == "SAM": | |
return self.rmbg_sam(image, crop_size, foreground_ratio, background_choice, backgroud_color) | |
elif rm_type.upper() == "REMBG": | |
return self.rmbg_rembg(image, crop_size, foreground_ratio, background_choice, backgroud_color) | |
else: | |
return -1 | |
elif "Original" in background_choice: | |
return image | |
else: | |
return -1 | |
def save_image(tensor): | |
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
# pdb.set_trace() | |
im = Image.fromarray(ndarr) | |
return ndarr | |
def prepare_data(single_image, crop_size): | |
from apps.third_party.Wonder3D.mvdiffusion.data.single_image_dataset import SingleImageDataset | |
dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[256, 256], bg_color='white', crop_size=crop_size, single_image=single_image) | |
return dataset[0] | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def sam_segment(predictor, input_image, *bbox_coords): | |
bbox = np.array(bbox_coords) | |
image = np.asarray(input_image) | |
start_time = time.time() | |
predictor.set_image(image) | |
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True) | |
print(f"SAM Time: {time.time() - start_time:.3f}s") | |
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) | |
out_image[:, :, :3] = image | |
out_image_bbox = out_image.copy() | |
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 | |
torch.cuda.empty_cache() | |
return Image.fromarray(out_image_bbox, mode='RGBA') | |
def expand_to_square(image, bg_color=(0, 0, 0, 0)): | |
# expand image to 1:1 | |
width, height = image.size | |
if width == height: | |
return image | |
new_size = (max(width, height), max(width, height)) | |
new_image = Image.new("RGBA", new_size, bg_color) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
new_image.paste(image, paste_position) | |
return new_image | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def remove_background( | |
image: PIL.Image.Image, | |
rembg_session = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
return image | |
def do_resize_content(original_image: Image, scale_rate): | |
# resize image content wile retain the original image size | |
if scale_rate != 1: | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = original_image.resize(new_size) | |
# Create a new image with the original size and black background | |
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
return padded_image | |
else: | |
return original_image | |
def add_background(image, bg_color=(255, 255, 255)): | |
# given an RGBA image, alpha channel is used as mask to add background color | |
background = Image.new("RGBA", image.size, bg_color) | |
return Image.alpha_composite(background, image) |